University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2005

Tamara Munzner

Interpolation
Clipping

Week 7, Mon Feb 21

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2005
News

- grades for p1, h2 posted
Interpolation
Scan Conversion

- done
 - how to determine pixels covered by a primitive
- next
 - how to assign pixel colors
 - interpolation of colors across triangles
 - interpolation of other properties
Interpolation During Scan Conversion

- Interpolate values between vertices
 - z values
 - r, g, b colour components
 - Use for Gouraud shading
 - u, v texture coordinates
 - N_x, N_y, N_z surface normals
- Equivalent methods (for triangles)
 - Bilinear interpolation
 - Barycentric coordinates
Bilinear Interpolation

- Interpolate quantity along L and R edges, as a function of y
 - Then interpolate quantity as a function of x
Barycentric Coordinates

- weighted combination of vertices

\[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]
\[\alpha + \beta + \gamma = 1 \]
\[0 \leq \alpha, \beta, \gamma \leq 1 \]

"convex combination of points"
Computing Barycentric Coordinates

- for point P on scanline

\[P_L = P_2 + \frac{d_1}{d_1 + d_2} (P_3 - P_2) \]
\[= (1 - \frac{d_1}{d_1 + d_2})P_2 + \frac{d_1}{d_1 + d_2}P_3 = \]
\[= \frac{d_2}{d_1 + d_2}P_2 + \frac{d_1}{d_1 + d_2}P_3 \]
Computing Barycentric Coordinates

- similarly

\[
P_R = P_2 + \frac{b_1}{b_1 + b_2} (P_1 - P_2)
\]

\[
= (1 - \frac{b_1}{b_1 + b_2})P_2 + \frac{b_1}{b_1 + b_2} P_1 =
\]

\[
= \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1
\]
Computing Barycentric Coordinates

- combining

\[
P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)
\]

- gives

\[
P_L = \frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3
\]

\[
P_R = \frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1
\]
Computing Barycentric Coordinates

\[
P = \frac{c_2}{c_1 + c_2} \left(\frac{d_2}{d_1 + d_2} P_2 + \frac{d_1}{d_1 + d_2} P_3 \right) + \frac{c_1}{c_1 + c_2} \left(\frac{b_2}{b_1 + b_2} P_2 + \frac{b_1}{b_1 + b_2} P_1 \right)
\]

thus \(P = a_1 \cdot P_1 + a_2 \cdot P_2 + a_3 \cdot P_3 \)

with

\[
a_1 = \frac{c_1}{c_1 + c_2} \frac{b_1}{b_1 + b_2}
\]

\[
a_2 = \frac{c_2}{c_1 + c_2} \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \frac{b_2}{b_1 + b_2}
\]

\[
a_3 = \frac{c_2}{c_1 + c_2} \frac{d_1}{d_1 + d_2}
\]
can verify barycentric properties

\[a_1 + a_2 + a_3 = 1 \]
\[0 \leq a_1, a_2, a_3 \leq 1 \]

\[
a_1 = \frac{c_1}{c_1 + c_2} \frac{b_1}{b_1 + b_2}
\]

\[
a_2 = \frac{c_2}{c_1 + c_2} \frac{d_2}{d_1 + d_2} + \frac{c_1}{c_1 + c_2} \frac{b_2}{b_1 + b_2}
\]

\[
a_3 = \frac{c_2}{c_1 + c_2} \frac{d_1}{d_1 + d_2}
\]
Clipping
Reading

- FCG Chapter 11
 - pp 209-214 only: clipping
Rendering Pipeline

Geometry Database → Model/View Transform. → Lighting → Perspective Transform. → Clipping

Clipping → Frame-buffer

Frame-buffer → Blending → Depth Test → Texturing → Scan Conversion

Scan Conversion → Geometry Database
Next Topic: Clipping

- we’ve been assuming that all primitives (lines, triangles, polygons) lie entirely within the *viewport*
- in general, this assumption will not hold:
Clipping

- analytically calculating the portions of primitives within the viewport
Why Clip?

- bad idea to rasterize outside of framebuffer bounds
- also, don’t waste time scan converting pixels outside window
 - could be billions of pixels for very close objects!
Line Clipping

- **2D**
 - determine portion of line inside an axis-aligned rectangle (screen or window)

- **3D**
 - determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - simple extension to 2D algorithms
Clipping

- naive approach to clipping lines:
 - for each line segment
 - for each edge of viewport
 - find intersection point
 - pick “nearest” point
 - if anything is left, draw it
- what do we mean by “nearest”?
- how can we optimize this?
Trivial Accepts

- big optimization: trivial accept/rejects
 - Q: how can we quickly determine whether a line segment is entirely inside the viewport?
 - A: test both endpoints
Trivial Rejects

- Q: how can we know a line is outside viewport?
- A: if both endpoints on wrong side of same edge, can trivially reject line
Clipping Lines To Viewport

- combining trivial accepts/rejects
 - trivially accept lines with both endpoints inside all edges of the viewport
 - trivially reject lines with both endpoints outside the same edge of the viewport
 - otherwise, reduce to trivial cases by splitting into two segments
Cohen-Sutherland Line Clipping

- **outcodes**
- 4 flags encoding position of a point relative to top, bottom, left, and right boundary

- \(OC(p1) = 0010 \)
- \(OC(p2) = 0000 \)
- \(OC(p3) = 1001 \)
Cohen-Sutherland Line Clipping

- assign outcode to each vertex of line to test
 - line segment: \((p_1, p_2)\)
- trivial cases
 - \(\text{OC}(p_1) == 0 \&\& \text{OC}(p_2) == 0\)
 - both points inside window, thus line segment completely visible (trivial accept)
 - \((\text{OC}(p_1) \& \text{OC}(p_2)) != 0\)
 - there is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - thus line segment completely outside window (trivial reject)
Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses (how?)
- intersect line with edge (how?)
- discard portion on wrong side of edge and assign outcode to new vertex
- apply trivial accept/reject tests; repeat if necessary
Cohen-Sutherland Line Clipping

- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses
 - check against edges in same order each time
 - for example: top, bottom, right, left
Cohen-Sutherland Line Clipping

- intersect line with edge (how?)
Cohen-Sutherland Line Clipping

- discard portion on wrong side of edge and assign outcode to new vertex

- apply trivial accept/reject tests and repeat if necessary
Viewport Intersection Code

- \((x_1, y_1), (x_2, y_2)\) intersect vertical edge at \(x_{\text{right}}\)
 - \(y_{\text{intersect}} = y_1 + m(x_{\text{right}} - x_1)\)
 - \(m = \frac{y_2 - y_1}{x_2 - x_1}\)

- \((x_1, y_1), (x_2, y_2)\) intersect horiz edge at \(y_{\text{bottom}}\)
 - \(x_{\text{intersect}} = x_1 + \frac{(y_{\text{bottom}} - y_1)}{m}\)
 - \(m = \frac{y_2 - y_1}{x_2 - x_1}\)
Cohen-Sutherland Discussion

- use opcodes to quickly eliminate/include lines
 - best algorithm when trivial accepts/rejects are common
- must compute viewport clipping of remaining lines
 - non-trivial clipping cost
 - redundant clipping of some lines
- more efficient algorithms exist
Line Clipping in 3D

- approach
 - clip against parallelepiped in NDC
 - after perspective transform
 - means that clipping volume always the same
 - xmin=ymin=-1, xmax=ymax=1 in OpenGL

- boundary lines become boundary planes
 - but outcodes still work the same way
 - additional front and back clipping plane
 - zmin = -1, zmax = 1 in OpenGL
Polygon Clipping

- objective
 - 2D: clip polygon against rectangular window
 - or general convex polygons
 - extensions for non-convex or general polygons
 - 3D: clip polygon against parallelepiped
Polygon Clipping

- not just clipping all boundary lines
- may have to introduce new line segments
Why Is Clipping Hard?

- what happens to a triangle during clipping?
- possible outcomes:
 - triangle \Rightarrow triangle
 - triangle \Rightarrow quad
 - triangle \Rightarrow 5-gon
- how many sides can a clipped triangle have?
How Many Sides?

- seven...
Why Is Clipping Hard?

- a really tough case:
Why Is Clipping Hard?

- a really tough case:

concave polygon \Rightarrow multiple polygons
Polygon Clipping

- classes of polygons
 - triangles
 - convex
 - concave
 - holes and self-intersection
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Algorithm

- input/output for algorithm
 - input: list of polygon vertices in order
 - output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)

- basic routine
 - go around polygon one vertex at a time
 - decide what to do based on 4 possibilities
 - is vertex inside or outside?
 - is previous vertex inside or outside?
Clipping Against One Edge

- $p[i]$ inside: 2 cases

output: $p[i]$
Clipping Against One Edge

- $p[i]$ outside: 2 cases

input: $p[i]$ output: p

input: $p[i]$ output: nothing
Clipping Against One Edge

clipPolygonToEdge(p[n], edge) {
 for(i = 0 ; i< n ; i++) {
 if(p[i] inside edge) {
 if(p[i-1] inside edge) output p[i]; // p[-1]= p[n-1]
 else {
 p= intersect(p[i-1], p[i], edge); output p, p[i];
 }
 } else { // p[i] is outside edge
 if(p[i-1] inside edge) {
 p= intersect(p[i-1], p[i], edge); output p;
 }
 }
 }
}
Sutherland-Hodgeman Example
Sutherland-Hodgeman Discussion

- similar to Cohen/Sutherland line clipping
 - inside/outside tests: outcodes
 - intersection of line segment with edge: window-edge coordinates
- clipping against individual edges independent
 - great for hardware (pipelining)
 - all vertices required in memory at same time
 - not so good, but unavoidable
 - another reason for using triangles only in hardware rendering
Sutherland/Hodgeman Discussion

- for rendering pipeline:
 - re-triangulate resulting polygon
 (can be done for every individual clipping edge)