Interpolation

Interpolation During Scan Conversion
- Interpolate values between vertices
 - z values
 - r,g,b colour components
 - use for Gouraud shading
- u,v texture coordinates
- \(N_x, N_y, N_z \) surface normals
- Equivalent methods (for triangles)
 - Bilinear interpolation
 - Barycentric coordinates

Scan Conversion
- Done
- How to determine pixels covered by a primitive
- Next
- How to assign pixel colors
 - Interpolation of colors across triangles
 - Interpolation of other properties

Bilinear Interpolation
- Interpolate quantity along L and R edges, as a function of y
 - Then interpolate quantity as a function of x
Barycentric Coordinates

- weighted combination of vertices

\[P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3 \]

\[\alpha + \beta + \gamma = 1 \]

\[0 \leq \alpha, \beta, \gamma \leq 1 \]

"convex combination of points"

Computing Barycentric Coordinates

- for point P on scanline

\[P_L = P_1 + \frac{d_1}{d_1 + d_2} (P_1 - P_2) \]

\[= \frac{d_1}{d_1 + d_2} P_2 + \frac{d_2}{d_1 + d_2} P_3 \]

- combining

\[P = \frac{c_1}{c_1 + c_2} \cdot P_L + \frac{c_2}{c_1 + c_2} \cdot P_R \]

\[P_L = P_1 + \frac{b_1}{b_1 + b_2} (P_1 - P_2) \]

\[= \frac{b_1}{b_1 + b_2} P_1 + \frac{b_2}{b_1 + b_2} P_2 \]

- gives

\[P = \frac{c_1}{c_1 + c_2} \left(\frac{d_1}{d_1 + d_2} P_1 + \frac{d_2}{d_1 + d_2} P_2 \right) + \frac{c_2}{c_1 + c_2} \left(\frac{b_1}{b_1 + b_2} P_1 + \frac{b_2}{b_1 + b_2} P_2 \right) \]

- can verify barycentric properties

\[a_1 + a_2 + a_3 = 1 \]

\[0 \leq a_1, a_2, a_3 \leq 1 \]
Clipping

Reading
- FCG Chapter 11
- pp 209-214 only: clipping

Rendering Pipeline

Next Topic: Clipping
- we've been assuming that all primitives (lines, triangles, polygons) lie entirely within theViewport.
- in general, this assumption will not hold:

Why Clip?
- bad idea to rasterize outside of framebuffer bounds
- also, don't waste time scan converting pixels outside window
- could be billions of pixels for very close objects!

Clipping
- analytically calculating the portions of primitives within the viewport
Line Clipping

- 2D
 - determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
 - determine portion of line inside axis-aligned parallelepiped (viewing frustum in NDC)
 - simple extension to 2D algorithms

Clipping

- naïve approach to clipping lines:
 - for each line segment
 - for each edge of viewport
 - find intersection point
 - pick “nearest” point
 - if anything is left, draw it
- what do we mean by “nearest”?
- how can we optimize this?

Trivial Accepts

- big optimization: trivial accept/rejects
- Q: how can we quickly determine whether a line segment is entirely inside the viewport?
- A: test both endpoints

Trivial Rejects

- Q: how can we know a line is outside viewport?
- A: if both endpoints on wrong side of same edge, can trivially reject line

Clipping Lines To Viewport

- combining trivial accepts/rejects
 - trivially accept lines with both endpoints inside all edges of the viewport
 - trivially reject lines with both endpoints outside the same edge of the viewport
 - otherwise, reduce to trivial cases by splitting into two segments

Cohen-Sutherland Line Clipping

- outcodes
 - 4 flags encoding position of a point relative to top, bottom, left, and right boundary
 - OC(p1)=0010
 - OC(p2)=0000
 - OC(p3)=1001
 - OC(p4)=0101
 - y=y_{max}:
 - x=x_{min}
 - x=x_{max}
 - y=y_{min}:
 - x=x_{min}
 - x=x_{max}
Cohen-Sutherland Line Clipping

- assign outcode to each vertex of line to test
- line segment: (p1, p2)
- trivial cases
 - \(OC(p1) = 0 \) & \(OC(p2) = 0 \):
 - both points inside window, thus line segment completely visible (trivial accept)
 - \((OC(p1) \& OC(p2)) = 0\):
 - there is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - thus line segment completely outside window (trivial reject)
- if line cannot be trivially accepted or rejected, subdivide so that one or both segments can be discarded
- pick an edge that the line crosses (\textit{how?})
- intersect line with edge (\textit{how?})
- discard portion on wrong side of edge and assign outcode to new vertex
- apply trivial accept/reject tests; repeat if necessary

Viewport Intersection Code

- \((x_1, y_1), (x_2, y_2)\) intersect vertical edge at \(x_{\text{right}}\)
 - \(y_{\text{intersect}} = y_1 + m(x_{\text{right}} - x_1) \)
 - \(m = (y_2 - y_1) / (x_2 - x_1) \)

- \((x_1, y_1), (x_2, y_2)\) intersect horiz edge at \(y_{\text{bottom}}\)
 - \(x_{\text{intersect}} = x_1 + (y_{\text{bottom}} - y_1) / m \)
 - \(m = (y_2 - y_1) / (x_2 - x_1) \)
Cohen-Sutherland Discussion
- use opcodes to quickly eliminate/include lines
- best algorithm when trivial accepts/rejects are common
- must compute viewport clipping of remaining lines
- non-trivial clipping cost
- redundant clipping of some lines
- more efficient algorithms exist

Line Clipping in 3D
- approach
 - clip against parallelepiped in NDC
 - after perspective transform
 - means that clipping volume always the same
 - xmin=ymin=-1, xmax=ymax=1 in OpenGL
- boundary lines become boundary planes
 - but outcodes still work the same way
 - additional front and back clipping plane
 - zmin=-1, zmax=1 in OpenGL

Polygon Clipping
- objective
 - 2D: clip polygon against rectangular window
 - or general convex polygons
 - extensions for non-convex or general polygons
 - 3D: clip polygon against parallelepiped

Polygon Clipping
- not just clipping all boundary lines
- may have to introduce new line segments

Why Is Clipping Hard?
- what happens to a triangle during clipping?
- possible outcomes:
 - triangle ⊙ triangle
 - triangle ⊙ quad
 - triangle ⊙ 5-gon
- how many sides can a clipped triangle have?

How Many Sides?
- seven…
Why Is Clipping Hard?
- a really tough case:

Polygon Clipping
- classes of polygons
 - triangles
 - convex
 - concave
 - holes and self-intersection

Sutherland-Hodgeman Clipping
- basic idea:
 - consider each edge of the viewport individually
 - clip the polygon against the edge equation
 - after doing all edges, the polygon is fully clipped
Sutherland-Hodgeman Clipping

basic idea:
- consider each edge of the viewport individually
- clip the polygon against the edge equation
- after doing all edges, the polygon is fully clipped

After doing all edges, the polygon is fully clipped.
Sutherland-Hodgeman Algorithm
- **input/output for algorithm**
 - input: list of polygon vertices in order
 - output: list of clipped polygon vertices consisting of old vertices (maybe) and new vertices (maybe)
- **basic routine**
 - go around polygon one vertex at a time
 - decide what to do based on 4 possibilities
 - is vertex inside or outside?
 - is previous vertex inside or outside?

Clipping Against One Edge
- **p[i] inside**: 2 cases
 - output: p[i]
 - p[i] - p[i-1]
- **p[i] outside**: 2 cases
 - output: p[i]
 - p[i] - p[i-1]

```c
void clipPolygonToEdge( p[n], edge ) {
  for( i= 0 ; i< n ; i++ ) {
    if( p[i] inside edge ) {
      if( p[i-1] inside edge ) {
        output p[i];
        // p[-1]= p[n-1]
      } else {
        p= intersect( p[i-1], p[i], edge );
        output p, p[i];
      }
    } else {                                    // p[i] is outside edge
      if( p[i-1] inside edge ) {
        p= intersect(p[i-1], p[i], edge );
        output p;
      } else {
        // p[i] is outside edge
        p= intersect(p[i-1], p[i], edge );
        output p;
      }
    }
  }
}
```

Sutherland-Hodgeman Example

Sutherland-Hodgeman Discussion
- similar to Cohen/Sutherland line clipping
- inside/outside tests: outcodes
- intersection of line segment with edge: window-edge coordinates
- clipping against individual edges independent
- great for hardware (pipelining)
- all vertices required in memory at same time
 - not so good, but unavoidable
- another reason for using triangles only in hardware rendering
Sutherland/Hodgeman Discussion

- for rendering pipeline:
 - re-triangulate resulting polygon
 (can be done for every individual clipping edge)