
1

Particle Systems

CPSC 414
Robert Bridson

Particle Systems

A large collection of points that move as
a group
For phenomena that look like big groups
of points

Dust, water spray, rain, stars, sparks, …
For “fuzzy” phenomena that are really
hard to model

Smoke, fire, clouds, grass, fur, water, …

Questions

When and where do particles start?
(and when do they disappear)

How do they move?
What do they look like?
Let’s take a quick look at a few movies
to see what the answers could be…

What is a particle?
Most basic particle only has a position x
Usually add other attributes, such as:

Age
Colour
Radius
Orientation
Velocity v
Mass m
Temperature
Type

Seeding
Need to add (or seed) particles to the scene
Where?

Randomly within a shaped volume or on a surface
At a point
Where there aren’t many particles currently

When?
At the start
Several per frame
When there aren’t enough particles somewhere

Need to figure out other attributes, not just
position

E.g. velocity pointing outwards in an explosion

Basic animation

Specify a velocity field v(x,t) for any
point in space x, any time t
Break time into steps

E.g. per frame - ∆t=1/30th of a second
Or several steps per frame

Change each particle’s position xi by
“integrating” over the time step

xi
new = xi + ∆tv xi,t()

2

Velocity fields

Velocity field could be a combination of
pre-designed velocity elements

[examples]
Or from “noise”

Smooth random number field
[show it]

Or from a simulation
Interpolate velocity from a computed grid

Second order motion
Real particles move due to forces

Newton’s law F=ma
Need to specify force F (gravity, collisions, …)
Divide by particle mass to get acceleration a
Update velocity v by acceleration
Update position x by velocity

vi
new = vi + ∆t F(xi,vi,t)

mi
xi
new = xi + ∆tvi

new

Time integration
Really solving ordinary differential equations
in time:

Methods presented before are called
“Forward Euler” and “Symplectic Euler”

There are better numerical methods…

dxi
dt

= v xi, t() or

dxi
dt

= vi
dvi
dt

=
1
mi
F xi,vi, t()

Basic rendering
Draw a dot for each particle
But what do you do with several particles per
pixel?

Add: models each point emitting (but not
absorbing) light -- good for sparks, fire, …
More generally, compute depth order, do alpha-
compositing (and worry about shadows etc.)

Anti-aliasing
Blur edges of particle, make sure blurred to cover
at least a pixel

Particle with radius: kernel function

Motion blur

Temporal anti-aliasing
Really easy for simple particles

Instead of a dot, draw a line
(from old position to new position)

More accurately, draw a spline curve
May need to take into account radius as
well…

More detailed rendering

Stick a texture (or even a little movie) on
each particle

E.g. a noise function
E.g. a video of real flames

Draw a little object for each particle
Need to keep track of orientation as well,
unless spherical

3

Back to animation
The real power of particle systems comes
when forces depend on other particles
Example: connect particles together with
springs

If particles i and j are connected, spring force is

The rest length is L and the spring “stiffness” is k

Fi = −k xi − x j − Lij() xi − x jxi − x j
Fj = −Fi

Damped springs
Real springs slowly oscillate less and
less

Motion is “damped”
Add damping force:

D is damping parameter

Fi
damp = −D vi − v j()⋅

xi − x j
xi − x j

xi − x j
xi − x j

Fj
damp = −Fi

damp

Elastic objects
Can animate elastic objects by sprinkling
particles through them, then connecting them
up with a mesh of springs

Hair - lines of springs
Cloth - 2D mesh of springs
Jello - 3D mesh of springs

Rendering done differently though
Hair - draw curve through particles
Cloth/Jello - draw surface triangles between
particles

Liquids
Can even animate liquids (water, mud…)
Instead of fixing which particles are
connected, just let nearby particles interact

If particles are too close, force pushes them apart
If particles a bit further, force pulls them closer
If particles even further, no more force

With enough particles, can get a nice liquid
look
But how do we render?

There is no fixed surface mesh of triangles!

Implicit Surface Rendering
Idea for water, mud, etc: implicit surface
Write down a function F(x) that implicitly
defines surface

Where it is above threshhold t we are inside
Where it is below, we are outside
Where F(x)=t is the surface

Ray-tracing implicit surface is pretty easy
For ray O+sD solve F(O+sD)=t

Could use Bisection or Secant search to find s
Get surface normal from ∇F

Other rendering methods trickier…

Building implicit surfaces
Simplest: a sphere

[what is it?]
How about two or more spheres?

[unions]
This works great for isolated particles,
but we want a smooth liquid mass when
we have lots of particles together

Not a bumpy union of spheres

4

Blobbies and Metaballs

Solution is to add kernel functions
together
Typically use a spline or Gaussian
kernel around each particle
[draw in 1D]

Acceleration

One last issue for animating and
rendering liquids: efficiency

Forces - need to quickly find only the
nearby particles (avoid O(n) checks!)
Rendering - need to quickly add only the
kernel functions that are not zero (avoid
O(n) sums!)

Use an acceleration structure
Background grid or hashtable

