Particle Systems

CPSC 414
Robert Bridson

Particle Systems

= A large collection of points that move as
a group

= For phenomena that look like big groups
of points
= Dust, water spray, rain, stars, sparks, ...

= For “fuzzy” phenomena that are really
hard to model
= Smoke, fire, clouds, grass, fur, water, ...

Questions

What is a particle?

= When and where do particles start?
= (and when do they disappear)

= How do they move?

= What do they look like?

= Let's take a quick look at a few movies
to see what the answers could be...

= Most basic particle only has a position x
= Usually add other attributes, such as:
= Age
Colour
Radius
Orientation
Velocity v
Mass m
Temperature
Type

Seeding

Basic animation

= Need to add (or seed) particles to the scene
= Where?
= Randomly within a shaped volume or on a surface
= At a point
= Where there aren’t many particles currently
= When?
= At the start
= Several per frame
= When there aren’t enough particles somewhere
= Need to figure out other attributes, not just
position
= E.g. velocity pointing outwards in an explosion

= Specify a velocity field v(x,t) for any
point in space x, any time t

= Break time into steps
= E.g. per frame - At=1/30th of a second
= Or several steps per frame

= Change each particle’s position x; by
“integrating” over the time step

X[=x,+ Atv(x,,1)

Velocity fields

Second order motion

= Velocity field could be a combination of
pre-designed velocity elements
= [examples]
= Or from “noise”
= Smooth random number field
= [show it]
= Or from a simulation
= |Interpolate velocity from a computed grid

= Real particles move due to forces
= Newton’s law F=ma
= Need to specify force F (gravity, collisions, ...)
= Divide by particle mass to get acceleration a
= Update velocity v by acceleration
= Update position x by velocity

F(x,v,,1)
m.

1

v =v, + At

X=X, A

Time integration

Basic rendering

= Really solving ordinary differential equations
in time:

dxi —
dx, dr
~=v(x,t) or
dt (xo1) id: =iF(x,.,v,.,t)
dt m,

= Methods presented before are called
“Forward Euler” and “Symplectic Euler”
= There are better numerical methods...

Draw a dot for each particle
But what do you do with several particles per
pixel?
= Add: models each point emitting (but not
absorbing) light -- good for sparks, fire, ...
= More generally, compute depth order, do alpha-
compositing (and worry about shadows etc.)
Anti-aliasing
= Blur edges of particle, make sure blurred to cover
at least a pixel

Particle with radius: kernel function

Motion blur

More detailed rendering

= Temporal anti-aliasing

= Really easy for simple particles

= |nstead of a dot, draw a line
(from old position to new position)

= More accurately, draw a spline curve

= May need to take into account radius as
well...

= Stick a texture (or even a little movie) on
each particle
= E.g. a noise function
= E.g. a video of real flames

= Draw a little object for each particle

= Need to keep track of orientation as well,
unless spherical

Back to animation

= The real power of particle systems comes
when forces depend on other particles

= Example: connect particles together with
springs
= |f particles i and j are connected, spring force is

X, —Xx
F, =—k@xi —xjH—Lin
s

F,=-F,

= The rest length is L and the spring “stiffness” is k

Damped springs

= Real springs slowly oscillate less and
less

= Motion is “damped”
= Add damnina force:

=3, | a,=a,

de

Flom = _ (v,.—v/)#%
Hx"_fo Hx"_le

Elastic objects

= Can animate elastic objects by sprinkling
particles through them, then connecting them
up with a mesh of springs
= Hair - lines of springs
= Cloth - 2D mesh of springs
= Jello - 3D mesh of springs

= Rendering done differently though
= Hair - draw curve through particles

= Cloth/Jello - draw surface triangles between
particles

Liquids

= Can even animate liquids (water, mud...)

= Instead of fixing which particles are
connected, just let nearby particles interact
= |f particles are too close, force pushes them apart
= |f particles a bit further, force pulls them closer
= |f particles even further, no more force

= With enough particles, can get a nice liquid
look

= But how do we render?
= There is no fixed surface mesh of triangles!

Implicit Surface Rendering

= |dea for water, mud, etc: implicit surface
= Write down a function F(x) that implicitly
defines surface
= Where it is above threshhold t we are inside
= Where it is below, we are outside
= Where F(x)=t is the surface
= Ray-tracing implicit surface is pretty easy
= For ray O+sD solve F(O+sD)=t
= Could use Bisection or Secant search to find s
= Get surface normal from VF
= Other rendering methods trickier...

Building implicit surfaces

= Simplest: a sphere
= [what is it?]

= How about two or more spheres?
= [unions]

= This works great for isolated particles,
but we want a smooth liquid mass when
we have lots of particles together
= Not a bumpy union of spheres

Blobbies and Metaballs

= Solution is to add kernel functions
together

= Typically use a spline or Gaussian
kernel around each particle

= [draw in 1D]

Acceleration

= One last issue for animating and
rendering liquids: efficiency
= Forces - need to quickly find only the
nearby particles (avoid O(n) checks!)
= Rendering - need to quickly add only the
kernel functions that are not zero (avoid
O(n) sums!)
= Use an acceleration structure
= Background grid or hashtable

