Visibility

British Columbia

* image space algorithms:
— operate on pixels or scan-lines
— visibility resolved to the precision of the display
—e.g.: Z-buffer

» object space algorithms
— explicitly compute visible portions of polygons
— painter’s algorithm: depth-sorting, BSP trees

© Michiel van de Panne

Z-buffer University of

British Columbia
hardware support in graphics cards
poor for high-depth-complexity scenes

— need to render all polygons, even if
most are invisible

L4

eye

“jaggies”: pixel staircase along edges

© Michiel van de Panne

Z'bUffer Unn‘lerslty of

British Columbia

store (r,g,b,z) for each pixel

« typically 8+8+8+24 bits, can be more
for all i,j {
Depth[i,j] = MAX_DEPTH
Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,j]) {
Imagel[i,j] C_pixel
Depth[i,]] Z_pixel
}
}
}

Michiel van de Panne

The A-Buffer .

British Columbia
+ antialiased, area-averaged accumulation buffer
— z-buffer: one visible surface per pixel
— A-buffer: linked list of surfaces

sufd | e—msurfB | ..

+ data for each surface includes
* RGB, Z, area-coverage percentage, ...

© Michiel van de Panne

BS P trees University of

British Columbia
Binary Space Partitions
» object-space method
« produces a back-to-front ordering
* build the BSP tree once
« traverse the BSP in a view-dependent fashion

© Michiel van de Panne

BSP trees (example) university of

British Columbia

. AN
—/
L]
eye
. A
(EJEEDABBE: L
- -+ + - + - -
C2EAC1BD / \ \

© Michiel van de Panne

Building a BSP tree

ity of
h Columbia

BSPtree *BSPmaketree (polygon list) {
choose a polygon as the tree root
for all other polygons {
if polygon is in front, add to front list
if polygon is behind, add to behind list
else split polygon and add one part to each list
}
BSPtree = BSPcombinetree (BSPmaketree (front list),
root, BSPmaketree (behind list))

© Michiel van de Panne

Ray Tracing Universityof

British Columbia
« cast a ray through each pixel
 requires efficient intersection tests
— walk along ray until first intersection

reflected
ray f:yad oW

eye

refracted ray
plane

© Michiel van de Panne

Using a BSP tree

producing a back-to-front ordering

British Columbia

DrawTree (BSPtree) {

if (eye is in front of root) {
DrawTree (BSPtree->behind)
DrawPoly (BSPtree->root)
DrawPoly (BSPtree->front)
else {
DrawTree (BSPtree->front)
DrawPoly (BSPtree->root)
DrawTree (BSPtree->behind)

-~

Michiel van de Panne

Ray Tracing . A

British Columbia

for each pixel on screen {
determine ray from eye through pixel
colour = raytrace (ray)
set pixel to colour

}

colour raytrace (ray) {
find closest intersection of ray with an object
reflect_colour = raytrace(reflected_ray)
refract_colour = raytrace(refracted_ray)
local_colour = lighting_computation()
return kl*reflect_colour + k2*refract_colour
+ k3*local_colour

© Michiel van de Panne

