
2013W1-lecture7

October 2, 2013

Contents

1 Question of the Day 1

2 Logistics 2

2.1 Programming Assignment #2 . . . . . . . . . . . . . . . . . . 2
2.1.1 Who does not have a team? . . . . . . . . . . . . . . . 3

2.2 Quiz/Conceptual Assignment #2: Wednesday . . . . . . . . . 3
2.3 Programming Assignment #3 . . . . . . . . . . . . . . . . . . 3

3 Functions 3

3.1 Useful templates for interp, desugar, and the like . . . . . . . 4
3.1.1 Working with a user-de�ned type with more than one

variant . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Working with a user-de�ned type with ONE variant . 4

4 What have we learned today? 5

1 Question of the Day

Here's Racket's documentation on the case form:

(case <val-expr> <case-clause> ...)

<case-clause> = [(<datum> ...) <then-body> ...+]

| [else <then-body> ...+]

1



Evaluating <val-expr> yields the value we check against the cases. The
entire expression's value is the result of evaluating either (1) the <then-body>
of the �rst <case-clause> with a <datum> which would, if quoted, be equal
to the value of the <val-expr> or (2) the <then-body> of the else clause if
no <datum> matches. Example:

(case (+ 7 5)

[(1 2 3) false]

[(10 11 12) true])

evaluates to true because 12 appears in the second clause.
Here's the question. People often use case clauses with quoted symbols

in place of the parenthesized <datum> syntax. Does it work? What do these
evaluate to?

(define (try-it x)

(case x

['+ false]

[else true]))

(try-it '+)

(try-it 'quote)

SOLUTION

Let's just run it!

Spoiler: they both evaluate to =false=.

Why?! Can you figure it out?

2 Logistics

2.1 Programming Assignment #2

Due one week from today.
This one should be easy for your team. We may release the next project

on Monday.
BE SURE to read the marking comments posted on Piazza!

2



2.1.1 Who does not have a team?

2.2 Quiz/Conceptual Assignment #2: Wednesday

See the assignments area of the course website for a running example we'll
use in the quiz. Think about it a bit beforehand!

2.3 Programming Assignment #3

Coming soon. This will involve desugaring the entire ParselTongue language
to a core language implementation we provide. Your test cases from PA2
will be absolutely invaluable in this process, particularly if they're simple,
well-targeted at speci�c semantic issues, and well-documented.

3 Functions

�le:2013W1-lecture7-functions.rkt

� TODO 1: �nish subst

� TODO 3: implement div/id/app interp cases

� TODO 2: function test cases. For our test cases, we'd like to explore
what happens..

� in �normal� cases where we call a natural-seeming function and it
does its thing

� when a function calls another function

� when a function calls itself (CAN'T REALLY DO RECURSION
W/OUT CONDITIONALS)

� when a function does not use its parameter

� when a function uses its parameter twice (how can we tell?)

* Just look for multiple references to the identi�er. It will al-
ways have one binding site where it's de�ned, but it may be
referenced multiple times.

� when a function's �actual parameter� is an identi�er?

� when we try to use an identi�er that is not bound anywhere?

� when we try to use an identi�er that's bound in the function that
calls the current function

3

http://www.ugrad.cs.ubc.ca/~cs311/current/_homework.php
file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-lecture7-functions.rkt


* If this is allowed, it means our language has dynamic scope

for identi�ers. In other words, an identi�er binding made in
a particular part of the program may be used in a totally
unrelated part of the program just because this part of the
program calls a function in that part (or calls a function that
calls a function that . . . that calls a function in that part).
If that sounds good, consider: How would you like it if call-
ing something like Math.min in Java could use (and maybe
modify the values of) identi�ers in your program?

* Fortunately, we'll use static scope in which an identi�er bind-
ing is only available in a region of the program de�ned by its
static structure (its �shape on the page�).

� Also, how could we tell the di�erence between �lazy� and �eager�
evaluation semantics? Can we test for the appropriate semantics?
What do we need to be able to do such a test?

* (test/exn (... '(useless x)) "")

� TODO 4: revisit lazy eval

� TODO 5: add a debug expression

3.1 Useful templates for interp, desugar, and the like

3.1.1 Working with a user-de�ned type with more than one vari-

ant

; Note: some fields of some variants may themselves be of type

; UserDefinedType. For those fields, we expect to make a recursive

; call. We use field2 of variant2 as an example below.

(define (foo [x : UserDefinedType]) : ...

(type-case UserDefinedType x

[variant1 (field1 field2 ...) (... field1 field2 ...)]

[variant2 (field1 field2 field3 ...) (... field1 (foo field2) field3 ...)]

...))

3.1.2 Working with a user-de�ned type with ONE variant

(define-type UserDefinedType1Variant

[variant (field1 : ..) (field2 : ..) ...])

; No need for type-case because only one variant!

4



; Each of the variant's fields is available to us.

(define (fun-for-user-defined-type-1-variant x)

(... (variant-field1 x) (variant-field2 x) ...))

4 What have we learned today?

� From QotD: not much :). A little more about desugaring and �leaking�
a desugaring to the user. We can see now that the quote form gets
desugared before the case form even gets to check its own syntax. If
the desugaring went after syntax checking, then the case form would
complain that it did not receive a parenthesized list of <datum> forms.

� Functions

� Explain in context four of the key features of a function:

* delaying evaluation of the function body,

* allowing evaluation of the function body from (possibly dis-
tant) locations in the program,

* blocking out bindings from the function's dynamic context,
and

* �allowing in� a dynamic value via the parameter(s).

� Formal parameters vs. actual parameters

* Distinguish between formal and actual parameters. (Formal
parameters are the names given to argument values within
the function; actual parameters are the argument expressions
whose values (under eager evaluation) are bound to the for-
mal parameters.)

* Identify formal and actual parameters in context.

� Function calls vs. function de�nitions

* Distinguish between a function call (also known as function
application) and a function de�nition. (A function call is
application of a previously de�ned function to actual pa-
rameters, which causes the function's body to be evaluated.
A function de�nition creates a function�prepares it to be
used�with formal parameters and a body but does not eval-
uate the body yet!)

* Identify function calls and de�nitions in context.

� Bound vs. unbound identi�ers

5



* De�ne bound and unbound identi�ers, including illustrating
their meanings with examples.

* Identify bound and unbound identi�ers in context.

* De�ne scope with respect to identi�ers. (The scope of an
identi�er's binding is the portion of the program in which
that binding is visible. In Racket, bindings use lexcical (AKA
static) scope. However, for the curious willing to su�er some
complexity, Racket does have a facility for something like
dynamic scope; see particularly the �with a fox� example in
http://docs.racket-lang.org/guide/parameterize.html.)

� Eager evaluation vs. lazy evaluation

* Explain the basic di�erence between lazy and eager evalua-
tion. (In lazy evaluation, actual parameters are not evaluated
before proceeding with a function call. So, formal parame-
ters are bound to the actual parameter expressions, not their
values. In eager evaluation, actual parameters are evaluated
prior to proceeding with a function call, and the function's
formal parameters are bound to the resulting values.)

* Be able to distinguish between lazy and eager evaluation
regimes by evaluating (and possibly providing a test case)
that behaves di�erently under the two regimes.

* Alter existing substitution and interpreter code to switch
back and forth between lazy and eager evaluation regimes.

6

http://docs.racket-lang.org/guide/parameterize.html

	Question of the Day
	Logistics
	Programming Assignment #2
	Who does not have a team?

	Quiz/Conceptual Assignment #2: Wednesday
	Programming Assignment #3

	Functions
	Useful templates for interp, desugar, and the like
	Working with a user-defined type with more than one variant
	Working with a user-defined type with ONE variant


	What have we learned today?

