
2013W1-lecture6

September 16, 2013

Contents

1 Question of the Day 1

1.1 Solution . 1

2 Logistics 2

2.1 Programming Assignment #2 2
2.2 Conceptual Assignment #1 (quiz corrections) due Tue at 8PM 2
2.3 Reminder of Piazza (e.g., to answer �Where do I �nd plai-typed

documention?�) . 3

3 Desugaring 3

4 What have we learned today? 4

1 Question of the Day

What happens in Racket when we add 230 + 230?
Let's also try it in C:

printf("%d", 1073741824 + 1073741824);

-2147483648.0

1.1 Solution

Oh, so you think whatever semantics Racket provides is perfect? Try this,
smarty-pants:

1

; Multiply k by the fraction f until it reaches zero.

(define (reduce-to-zero k f)

(if (= k 0.0)

true

(reduce-to-zero (* f k) f)))

; Which of these terminates?

(reduce-to-zero 0 0)

(reduce-to-zero 1 0.25)

(reduce-to-zero 1 0.75)

(reduce-to-zero 1 1)

Now, imagine that we created our own Racket implementation of the
IEEE �oating-point standard (perhaps with bugs) and wrote the same func-
tion. Is it easy to determine statically whether this terminates?

In fact, there are static analysis systems that (maybe) can answer this
question in this case because people have worked hard to �nd analyses that
are e�ective for these sorts of questions.

But you will:

1. theoretically always be able to come up with a question that cannot
be answered statically for some programs and

2. practically always be able to come up with a question that cannot
be answered statically by the (su�ciently e�cient, perhaps) available
static analyses.

2 Logistics

2.1 Programming Assignment #2

Out today!
Teams of 2-3. Find a team! (We strongly prefer pairs.)
Due one week from Friday.
Start early b/c we may release another programming assignment next

Monday due the following Friday!

2.2 Conceptual Assignment #1 (quiz corrections) due Tue
at 8PM

See the quiz document itself (posted in the assignments area of the website).
The �rst one is handin target ca1.

2

http://www.ugrad.cs.ubc.ca/~cs311/current/_homework.php

2.3 Reminder of Piazza (e.g., to answer �Where do I �nd
plai-typed documention?�)

https://piazza.com/ubc.ca/winterterm12013/cpsc311
WARNING: I will close Piazza registration by Friday!

3 Desugaring

Let's add functionality to our non-deterministic calculator using desugaring!
Desugaring is the process of converting a surface language to an under-

lying core via a static transformation. In other words, we're not running the
program yet, but we are �simplifying� it.

Be careful of that word �simplifying�, however. In some cases, the un-
derlying core may seem more complex than the surface language, but it will
generally present at least one of the advantages below.

So, why would we want to desugar?
BRAINSTORM!

� allows us to build di�erent surface languages atop a single core

� may make either the program or the interpreter faster

� better grasp of semantics in �leaner� core language

� separation of concerns: don't worry simultaneously about user interface
needs and language design needs

� customize the language to the domain at hand

� simpler maintenance for core language

� keep the same surface syntax but improve the underlying language
(backwards compatibility)

SOLUTION

At least:

+ present the programmer with a "friendlier" interface,

+ build a different looking language atop an existing core,

+ reduce a complex language to a simpler one to make our language

implementation job easier,

+ reduce a complex language to a simple core to make it easier to

3

https://piazza.com/ubc.ca/winterterm12013/cpsc311

reason about the core (e.g., to prove security, correctness, or

resource use properties),

+ add desired features to the language without complicating its

implementation.

See �le:2013W1-desugaring-nondet-interp.rkt.

4 What have we learned today?

From QotD:

� More on the distinction between �static� and �dynamic�.

� Desugaring

� Explain the relationship of a desugarer to the parser and inter-
preter.

� Justify the use of desugaring on various grounds, including its im-
pact on the programmer's interface(s), the language implementa-
tion's complexity, the tractability (doable-ness) of useful reason-
ing over the language, and the software engineering advantages of
isolating components of the interpreter system.

� Extend a surface language over an existing core language using a
desugaring.

4

file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-desugaring-nondet-interp.rkt

	Question of the Day
	Solution

	Logistics
	Programming Assignment #2
	Conceptual Assignment #1 (quiz corrections) due Tue at 8PM
	Reminder of Piazza (e.g., to answer ``Where do I find plai-typed documention?'')

	Desugaring
	What have we learned today?

