
2013W1-lecture28

November 22, 2013

Contents

1 Question of the Day 1

2 Logistics 2

2.1 Final Project: Proposal resubmit due today 2
2.2 Final Project: Background Research Report due today 2
2.3 Steve owes lambda calculus and continuation practice problems 3

3 Converting to �Continuation-Passing Style� (CPS) 3

4 Converting an interpreter to CPS 3

5 What have we learned today? 3

1 Question of the Day

Let's think about continuations.

� What is the continuation of objectAt(size - 1) in the following
code?

� What is the continuation of throw new EmptyStackException(); in
the following code? Careful, this is a �double-trick� question:

� The continuation divides the runtime call tree into three parts:

* The past is gone, and we ignore it.

1

* The �present� is the whole subtree that evaluates the current
expression (or statement, in this case), and we ignore it

as well. In other words, it could be replaced by any other
expression/statement, and it would make no di�erence to the
continuation! (For an expression, we give a name to the value
that will come back so we can use that value. For a statement,
we're going to ignore any value, anyway.)

* The �future� is the continuation.

� What continuation actually occurs when we evaluate throw new

EmptyStackException();?

// Code from the Oracle Java tutorial on throwing exceptions.

public Object pop() {

Object obj;

if (size == 0) {

throw new EmptyStackException();

}

obj = objectAt(size - 1);

setObjectAt(size - 1, null);

size--;

return obj;

}

2 Logistics

2.1 Final Project: Proposal resubmit due today

If you choose to resubmit (in which case be sure to submit a �le with the
appropriate name!), you'll be remarked and receive the new mark.

2.2 Final Project: Background Research Report due today

Be sure to AT LEAST easily clear the resubmit bar!
Better: submit something you think is good and get feedback on it from

your facilitator!

2

2.3 Steve owes lambda calculus and continuation practice

problems

3 Converting to �Continuation-Passing Style� (CPS)

How in the world does send/suspend manage to �grab� the continuation?
Let's �gure it out.

In order to get there, we need to expose the continuation. Right now, we
just rely on Racket (or Java or C++ or . . .) to keep track of the continuation
for us. Let's see if we can instead make the continuation explicit. In other
words, we're going to write programs that automatically generate the lambda
forms representing the continuation

4 Converting an interpreter to CPS

Converting our programs to CPS is extremely messy, but we don't need to!
As long as our runtime environment has a representation for the continuation,
it can expose that to us! That's what �stack ripping� does. We'll accomplish
the same thing by converting an interpreter to continuation-passing style.

5 What have we learned today?

� Continuations

� Justify the utility of �grabbing� everything that has to happen
after the current evaluation �nishes in a program?

* For a callback: as in web programming.

� Express the continuation of a particular program point as a func-
tion (to the extent that that's possible), an English description,
and a portion of the runtime call tree.

� Continuation-Passing Style

� De�ne tail call/tail position

* A tail call is a function call (e.g., a call to interp) that repre-
sents �all work remaining to be done� in evaluating the current
expression.

* Evaluation of an expression in tail position within a syntactic
form is always a tail call. (Note: sometimes a syntactic form

3

has multiple of these, as in if expressions! Sometimes an
expression will have no tail position, as in display.)

� De�ne continuation-passing style

* A program with the invariant that every (non-trivial, for some
appropriate de�nition of non-trivial) computation is in tail
position and where each non-trivial computation consumes
a continuation: a function which, given the value of the cur-
rent computation, performs all computations after the current
computation.

� Convert a simple program into continuation-passing style.

� Converting an interpreter to CPS

� Given an implementation of a case in an interpreter, convert it to
continuation-passing style.

� Explain the advantage of having an interpreter implemented in
continuation-passing style.

� (If we get to it:) Implement a simple control-�ow construct us-
ing an interpreter in CPS (possibly by desugaring to let/cc and
equivalent operations).

4

	Question of the Day
	Logistics
	Final Project: Proposal resubmit due today
	Final Project: Background Research Report due today
	Steve owes lambda calculus and continuation practice problems

	Converting to ``Continuation-Passing Style'' (CPS)
	Converting an interpreter to CPS
	What have we learned today?

