
2013W1-lecture27

November 22, 2013

Contents

1 Question of the Day 1

1.1 Solution . 2

2 Logistics 3

2.1 Final Project: Proposal resubmit due Friday 3
2.2 Final Project: Background Research Report due Friday . . . 3
2.3 Steve owes lambda calculus practice problems 3

3 Motivating Continuations 3

4 Converting to CPS 4

5 What have we learned today? 4

1 Question of the Day

What still needs to be done after (web-read "Enter the first number:")

�nishes evaluating in the following program?

(let (web-read (lambda (s)

(seq

(seq (display s) (display "\n"))

(read))))

(seq

(seq

(display

1

(+ (web-read "Enter the first number:")

(web-read "Enter the second number:")))

(display "\n"))

""))

In English:

1. We need to evaluate the second web-read call.

2. Add the results of the �rst web-read call and the second web-read

call.

3. Display the result of the addition.

4. Display the endline character (the bottom expression that does that).

5. Evaluate the empty string.

What still needs to be done after (read) �nishes evaluating in this pro-
gram?

1.1 Solution

We can write a program to represent the answer to the �rst question:

(let (web-read (lambda (s)

(seq

(seq (display s) (display "\n"))

(read))))

(lambda (it)

(seq

(seq

(display

(+ it

(web-read "Enter the second number:")))

(display "\n"))

"")))

However, we don't know what still needs to be done for the second pro-
gram because we don't know statically where (read) was called from. So,
instead, let's ask what still needs to be done after the second evaluation of
(read).

Then, we can write a program again. (Well, it's not quite a program.
Why not?)

2

(lambda (it)

(seq

(seq

(display (+ first-number

it))

(display "\n"))

""))

It's a perfectly good program if our lambda closed over the value of the
�rst number. Something like:

(let (first-number 5)

(lambda (it)

(seq

(seq

(display (+ first-number

it))

(display "\n"))

"")))

2 Logistics

2.1 Final Project: Proposal resubmit due Friday

If you choose to resubmit (in which case be sure to submit a �le with the
appropriate name!), you'll be remarked and receive the new mark.

2.2 Final Project: Background Research Report due Friday

Be sure to AT LEAST easily clear the resubmit bar!
Better: submit something you think is good and get feedback on it from

your facilitator!

2.3 Steve owes lambda calculus practice problems

3 Motivating Continuations

We call the answer to the QotD's �What still needs to be done after some

particular computation �nishes evaluating in a program?� a continuation.
Why would we want to think about continuations?
We'll switch over to code!

3

4 Converting to CPS

How in the world does send/suspend manage to �grab� the continuation?
Let's �gure it out.

In order to get there, we need to expose the continuation. Right now, we
just rely on Racket (or Java or C++ or . . .) to keep track of the continuation
for us. Let's see if we can instead make the continuation explicit. In other
words, we're going to write programs that automatically generate the lambda
forms representing the continuation

5 What have we learned today?

� Continuations

� Justify the utility of �grabbing� everything that has to happen
after the current evaluation �nishes in a program?

* For a callback: as in web programming.

� Express the continuation of a particular program point as a func-
tion (to the extent that that's possible), an English description,
and a portion of the runtime call tree.

� (If we get to it:) Continuation-Passing Style

� De�ne tail call/tail position

* A tail call is a function call (e.g., a call to interp) that repre-
sents �all work remaining to be done� in evaluating the current
expression.

* Evaluation of an expression in tail position within a syntactic
form is always a tail call. (Note: sometimes a syntactic form
has multiple of these, as in if expressions! Sometimes an
expression will have no tail position, as in display.)

� De�ne continuation-passing style

* A program with the invariant that every (non-trivial, for some
appropriate de�nition of non-trivial) computation is in tail
position and where each non-trivial computation consumes
a continuation: a function which, given the value of the cur-
rent computation, performs all computations after the current
computation.

� Convert a simple program into continuation-passing style.

4

	Question of the Day
	Solution

	Logistics
	Final Project: Proposal resubmit due Friday
	Final Project: Background Research Report due Friday
	Steve owes lambda calculus practice problems

	Motivating Continuations
	Converting to CPS
	What have we learned today?

