
2013W1-lecture23

November 2, 2013

Contents

1 Question of the Day 1

2 Logistics 1

2.1 Midterm Exam: Tue, 5 Nov, 1900�2130, in CHBE 101 1

2.2 Final Project . 2

3 Pass-by-Value and Pass-by-Reference 2

3.1 Pass-by-Value Review . 2

3.2 Pass-by-Reference Semantics 4

3.3 Implementing Pass-by-Reference 4

4 What have we learned today? 5

5 Some Practice Exercises 5

1 Question of the Day

Continuing our big sequences of questions about state!

2 Logistics

2.1 Midterm Exam: Tue, 5 Nov, 1900�2130, in CHBE 101

Remember: up to 3 textbooks and a 3� 3-ring binder of notes (or equivalent).

Also remember: individual exam followed by group exam!

1

2.2 Final Project

Information posted soon (hopefully by class time Monday!).

3 Pass-by-Value and Pass-by-Reference

3.1 Pass-by-Value Review

�Pass-by-Value� parameter-passing semantics sounds exciting but really just

means that when we initialize a formal parameter, we use roughly the same

semantics we use for assignment.

Assignment:

1. Evalute the right-hand-side

2. Get the store location of the identi�er on the left-hand-side

3. Update the store location with a copy of the value from the right

Pass-by-value parameter passing:

1. Evaluate the actual parameter expression

2. Set up a store location for the formal parameter identi�er

3. Update the store location with a copy of the value from the actual

parameter expression

When we call a function with pass-by-value semantics, we might use any

expression as the actual parameter expression: a literal number, an identi�er,

an arithmetic expression, a function application, and so on.

If we do use an identi�er, we can be con�dent that the function we call

cannot change the value of the identi�er we pass by assigning to the formal

parameter.

When we write a function that uses pass-by-value semantics, that means

that mutating the formal parameter is �ne but not generally very meaningful!

For example:

// This is a silly function that doesn't accomplish anything!

// Why? Because of pass-by-value semantics.

void swap(char x, char y) {

char temp = x;

x = y;

2

y = temp;

}

int main(int argc, char * argv[]) {

char a = 'a';

char b = 'b';

swap(a, b);

std::cout << "a: " << a << ", b: " << b << std::endl;

}

However, we did note that if our value is a store location�a �memory

address�, �pointer�, or �reference� in C, C++, or Java terms�or contains a

store location, copying that value introduces �aliasing�. Changes to whatever

is at that copied store location do a�ect the calling function.

So, this actually works:

// Aliasing allows this function to actually accomplish something.

// In order to accomplish it, however, we have to be careful to

// use *x and *y rather than x and y.

void swap(char * x, char * y) {

char temp = *x;

*x = *y;

*y = temp;

}

int main(int argc, char * argv[]) {

char a = 'a';

char b = 'b';

swap(&a, &b); // "&a" is "the store location bound to a"

std::cout << "a: " << a << ", b: " << b << std::endl;

}

There's nothing magical about store locations, however. In particular,

as the comment above swap indicates, this still doesn't work:

// This is a silly function that doesn't accomplish anything!

// Why? Because of pass-by-value semantics.

void swap(char * x, char * y) {

3

char * temp = x;

x = y;

y = temp;

}

int main(int argc, char * argv[]) {

char a = 'a';

char b = 'b';

swap(&a, &b); // "&a" is "the store location bound to a"

std::cout << "a: " << a << ", b: " << b << std::endl;

}

3.2 Pass-by-Reference Semantics

Pass-by-Reference semantics is a syntactic sugar for our second version of

swap above. In particular, with pass-by-reference semantics:

1. Instead of evaluating the actual parameter expression to a value, we

�evaluate� it as if it were on the left side of an assignment. We get its

store location.

2. Instead of creating a new store location for the formal parameter, we

bind it to the same store location as the actual parameter.

Notice how in our second version of swap, we use the & operator to

accomplish the �rst item and then use the * operator everywhere we use the

formal parameter to accomplish the second item.

3.3 Implementing Pass-by-Reference

Let's implement pass-by-reference in a language where we (if not our pro-

grammers!) have direct access to store locations. We're going to start with

a language in which surface assignment is desugared in terms of boxes.

So (set! x 3) becomes (set-box! x 3).

That means x must really refer to a box. When we say (+ x 1), we

really mean (+ (unbox x) 1).

How do we declare a variable, then? Consider:

(let (x 3)

...)

4

We need to create a box (a store location) for x in our desugaring. Let's

desugar it to:

(let (x (box 3))

...)

The box expression already does just the right thing: creates a fresh

store location!

Finally, pass by value semantics would have us desugar something like

(f a) to (f (box a)). Notice that we use box to create a new store location

for the formal parameter, just like let does.

Should pass by reference semantics also create a new store location?

Let's go do the implementation..

4 What have we learned today?

� Pass-by-Reference

� Explain what pass-by-reference semantics means in a language.

� Implement pass-by-reference semantics in a language (by desug-

aring or direct implementation).

� Explain what restrictions there are on the actual parameter ex-

pression when an actual parameter is passed by reference.

� Compare and contrast pass-by-value and pass-by-reference, in-

cluding speci�cally identifying the one major di�erence between

them.

* That would be: In pass by reference, directly mutating the

formal parameter has an impact on the actual parameter.

�Indirect� mutation (i.e., mutation on a store location referred

to in the value of the formal parameter) behaves the same for

both.

5 Some Practice Exercises

� Implement pass-by-reference semantics directly in the interpreter in-

stead of in the desugarer.

� Create a new ref-let construct that creates a �reference variable�. The

�binding expression� for the ref-letmust be a syntactic identi�er, and

5

the ref-let aliases the new reference variable with this other variable

(i.e., it does not create a new store location but reuses the one used by

the other variable).

� In C++, pass-by-reference semantics are actually accomplished

through a type modi�er that creates reference types. Reference

types are initialized as with ref-let. Yet, it hardly seems worth

bothering to have ref-let, since it just lets us refer to the same

variable by more than one name.

* Much more than just variables can appear on the left-

hand-side of an assignment operator. Expressions like *x,

array[3], or object.field can appear on the left of an as-

signment. Justify the existence of reference variables (i.e.,

ref-let) given this fact.

* Second, C++ even allows a function call to appear on the

left side of an assignment operator as in call() = 5;. What

do you think the type of the return value of call must be to

make this work?

6

	Question of the Day
	Logistics
	Midterm Exam: Tue, 5 Nov, 1900–2130, in CHBE 101
	Final Project

	Pass-by-Value and Pass-by-Reference
	Pass-by-Value Review
	Pass-by-Reference Semantics
	Implementing Pass-by-Reference

	What have we learned today?
	Some Practice Exercises

