
2013W1-lecture21

November 1, 2013

Contents

1 Question of the Day 1

1.1 Solution :solution: . 2

2 Logistics 2

2.1 Conceptual Assignment #4 2
2.2 NO QUIZ on Wed . 2
2.3 Programming Assignment #4 2
2.4 Midterm prep materials coming soon 3

3 Boxing Day 3

3.1 A Box By Any Other Name 3
3.2 Brief overview of C++ store location syntax/semantics 4
3.3 More Boxes By Any Other Name 5
3.4 Probing a New Semantics . 7
3.5 Passing Arguments �By Value� (the most common semantics) 8

4 What have we learned today? 11

5 Some Practice Exercises 11

1 Question of the Day

TypeScript is a superset of JavaScript that provides static type annotations�
information about the types of identi�ers provided statically.

Why bother with a static type system?

1

1.1 Solution :solution:

The usual answer given is to �nd errors early. I hope you have experienced
(as I have!) accidentally forgetting to call desugar on some subexpression
inside your desugarer and having the static type system warn you that the
resulting program does not pass type-checking. It can tell because leaving
out the call to desugar means using an ExprS where an ExprC is expected.

This sort of information can be quite useful.. but it can also be quite
annoying! Consider that in Racket, for instance, it's easy to leave part of
a function unimplemented. You can just �ll in ... or false or just about
anything you like in that part. It won't fail type-checking, and it won't cause
a problem unless that incorrect code happens to be run. That's great for
prototyping : quick, early drafting of design ideas and functionality.

However, that's not what TypeScript is for. In fact, TypeScript allows
the programmer to do many things that most statically-typed languages
would object to.

Instead, the type annotations in TypeScript are meant to provide infor-
mation to the programmer: to improve their interface. With the type an-
notations, the development environment is able to provide context-sensitive
help and suggestions like completing function names and providing the func-
tion's argument list with types.

2 Logistics

2.1 Conceptual Assignment #4

Corrections due Tue at 8PM.
As always, even if you got everything correct, HAND IN to let us know

that!

2.2 NO QUIZ on Wed

2.3 Programming Assignment #4

Full version due Sunday.
No demo, sadly. (Between the midterm and the Nov 11 holiday, there's

just no good week to do it!)
Instead, shortly after the midterm, we'll let you know the three core

syntax variants we want you to report on and what we want to know, and
you'll handin what you would have said at a demo. We'll likely also ask an
open-ended question.

2

2.4 Midterm prep materials coming soon

We'll de�nitely have some pre-posted background (like last time). We also
plan to provide some reasonably well-posed questions you can work through,
although we don't promise they'll be as tightly scoped as exam questions.

3 Boxing Day

We've implemented boxes in our interpreter, which means introducing a
store.

But, what does it really mean to �play with� store locations? Once we
have mutation and a distinction between the environment and the store,
the semantics of a language can become much more confusing. We should
understand how for at least two reasons:

1. We're all about semantics!

2. It will help us understand why we should limit our use of mutation
and state when writing programs in any language.

(Note: I'm not saying �don't use mutation�. I'm saying to understand
why to limit your use of it!)

3.1 A Box By Any Other Name

What would the following Java method print?

public void play() {

int x;

x = 1;

int y = x;

y = y * 10;

System.out.println(x + y);

}

Now, what does the following Java program print?

class Box {

public int value;

}

3

public class Play {

public static void main(String[] args) {

Box x = new Box();

x.value = 1;

Box y;

y = x;

y.value *= 10;

System.out.println(x.value + y.value);

}

}

How about this C++ program:

class Box {

public:

int value;

};

int main(int argc, char * argv[]) {

Box x;

x.value = 1;

Box y = x;

y.value *= 10;

std::cout << (x.value + y.value) << std::endl;

}

3.2 Brief overview of C++ store location syntax/semantics

C++ is handy because it really lets us explore the store. It gives us * and
&�which are both type modi�ers and, completly separately, operators, one
of them two entirely di�erent operators!�-which allow us to specify very
precisely where we want something to be a value and where we want it to be
a store location. We can do this because store locations are also legitimate
values in C++.

Let's review part of what C++ o�ers. Remember that types are sets of
values.

First, as in almost any language with mutable variables, for the expres-
sion on the left side of an assignment operator, the rules of evaluation change
slightly. Instead of looking up the value at the store location indicated by
the expression, we just get the store location and update that location to
contain a copy of the value from the right side of the assignment.

4

And:

� T x; where T is a type and x is an identi�er: declares a new variable
named x of type T. x has a store location and the entire T value is
stored at that store location, regardless of the type of T.

� This is like Java for lowercase (primitive) types like int and
double.

� This is UNLIKE Java for uppercase (class) types like Object

and Box. The C++ equivalent of Java's Box x; is Box * x;.

� T * x; where T is a type and x is an identi�er: declares a new variable
named x of type T*. T* is the set of store locations (addresses) of values
of type T.

� *e where e is an expression of type S*, where S is any type: evalu-
ates e to a store location and evaluates to the value at that location
(interpreted as an S).

� e.name where e is an expression of type R and name is a �eld name in
the type R: evaluates e to a value and then evaluates to the value of
its name �eld.

� This is UNLIKE Java's syntax e.name, which instead corre-
sponds to C++'s e->name.

� e->name where e is an expression of type R* and name is a �eld name in
the type R: is syntactic sugar for (*e).name. In other words, evaluates e
to a store location, gets the R value at that store location, and evaluates
to the name �eld of that value.

These semantics will let us play around very freely with store locations
and values. Java, on the other hand, uses its syntax to both obscure its use
and restrict our use of store locations. (This is not necessarily a bad thing!)

3.3 More Boxes By Any Other Name

So, how about this C++ program:

class Box {

public:

int value;

};

5

int main(int argc, char * argv[]) {

Box * x = new Box;

x->value = 1;

Box * y = x;

y->value *= 10;

std::cout << (x->value + y->value) << std::endl;

}

And this C++ program?

class Box {

public:

int value;

};

int main(int argc, char * argv[]) {

Box * x = new Box;

x->value = 1;

Box * y = x;

Box * temp = new Box;

temp->value = 10 * x->value;

y = temp;

std::cout << (x->value + y->value) << std::endl;

}

Next, let's try this C++ program:

class Box {

public:

int * value;

};

int main(int argc, char * argv[]) {

Box x;

x.value = new int;

*(x.value) = 1;

Box y = x;

6

*(y.value) *= 10;

std::cout << (*(x.value) + *(y.value)) << std::endl;

}

Finally, let's try this C++ program:

class Box {

public:

int * value;

};

int main(int argc, char * argv[]) {

Box x;

x.value = new int;

*(x.value) = 1;

Box y;

y.value = x.value;

*(y.value) *= 10;

std::cout << (*(x.value) + *(y.value)) << std::endl;

}

3.4 Probing a New Semantics

Here is a plai-typed program:

(display (local [(define x 1)

(define y x)]

(begin

(set! x (* x 10))

(+ x y))))

(display "\n")

(display (local [(define x (box 1))

(define y x)]

(begin

(set-box! y (* 10 (unbox y)))

(+ (unbox x) (unbox y)))))

(display "\n")

7

(display (local [(define x (box 1))

(define y (box 0))]

(begin

(set-box! y (unbox x))

(set-box! y (* 10 (unbox y)))

(+ (unbox x) (unbox y)))))

(display "\n")

We can play the �what does this print� game, but even more important
than that is �if we know what this prints, what does this tell us about the
semantics of the language�?

So, this prints:

11

20

11

What does this tell us about the semantics of the language?

3.5 Passing Arguments �By Value� (the most common se-
mantics)

By default, each of Java, C++, and plai-typed passes arguments �by value�.
That means when we apply a function, we:

1. evaluate the actual parameter expression,

2. allocate a store location for (this instance of) the formal parameter,

3. and copy the actual parameter value into the new store location.

(Unlike the others, C++ allows us to specify a rather di�erent semantics,
which we'll talk about next time. However, we can already understand that
semantics from what we've done today!)

Let's change two each of our Java, C++, and plai-typed examples to
use functions. In each case, bearing the �pass-by-value� semantics in mind,
what does the program print and why?

(WARNING: of all of these, Java is the trickiest. That's because Java
is underhanded and sly about where it uses store locations.)

A Java program that passes an int to a function that changes its formal
parameter:

8

public class Play {

public static void times10(int i) {

i *= 10;

}

public static void main(String[] args) {

int x;

x = 1;

times10(x);

System.out.println(x);

}

}

A Java program that passes a �boxed� int to a function that changes a
�eld of its formal parameter.

class Box {

public int value;

}

public class Play {

public static void times10(Box b) {

b.value *= 10;

}

public static void main(String[] args) {

Box x;

x.value = 1;

times10(x);

System.out.println(x.value);

}

}

A C++ program that passes an int to a function that changes its formal
parameter:

void times10(int i) {

i *= 10;

}

9

int main(int argc, char * argv[]) {

int x;

x = 1;

times10(x);

std::cout << x << std::endl;

}

A C++ program that passes the store location of an int to a function
that changes the value at that store location:

void times10(int * i) {

(*i) *= 10;

}

int main(int argc, char * argv[]) {

int * x = new int;

*x = 1;

times10(x);

std::count << *x << std::endl;

}

Two for the price of one: a plai-typed snippet that passes a number to
a function that changes its formal parameter; then, a plai-typed snippet
that passes a boxed number to a function that changes the boxed value in
its formal parameter.

(display (local [(define (times10 i)

(set! i (* i 10)))

(define x 1)]

(begin

(times10 x)

x)))

(display "\n")

(display (local [(define (times10 b)

(set-box! b (* (unbox b) 10)))

(define x (box 1))]

(begin

(times10 x)

(unbox x))))

(display "\n")

10

4 What have we learned today?

� From QotD:

� Give some compelling examples of static analyses besides pars-
ing/desugaring.

� Store locations

� Given a semantics for a language that includes mutation and a
short program in that language, sketch the contents of values and
the store in order to illustrate the behaviour of the program.

� Given a short program in a language that includes mutation, spec-
ulate intelligently on the semantics of the language (particularly
with respect to its handling of store locations).

� Pass-by-Value

� Explain what pass-by-value semantics means in a language.

� Explain with examples (including solving such examples) why
pass-by-value semantics does not mean �the callee function can-
not make changes using its argument that a�ect calling function's
interpretation of its actual parameter�.

* In other words: While it is technically true that the callee
cannot change the value of the caller's actual parameter ex-
pression, explain why that technicality is not enough to guard
against changes in the callee having a meaningful impact on
the caller.

� More: Unnecessary State Change as a �Bad Thing�

� Explain from a software engineering standpoint why (unnecessary
or excessive) use of mutation can make software more di�cult to
reason about and change.

5 Some Practice Exercises

Will post midterm practice exercises very soon!
Meanwhile, try this:

11

� Write at least two versions of a swap program in plai-typed and Java.
Each one should be intended to take two arguments and swap the values
in those arguments (i.e., x's new value is y's old value and y's new value
is x's old value). Only one should work, however. If you know any
other programming language, do the same in that other programming
language.

12

	Question of the Day
	Solution :solution:

	Logistics
	Conceptual Assignment #4
	NO QUIZ on Wed
	Programming Assignment #4
	Midterm prep materials coming soon

	Boxing Day
	A Box By Any Other Name
	Brief overview of C++ store location syntax/semantics
	More Boxes By Any Other Name
	Probing a New Semantics
	Passing Arguments ``By Value'' (the most common semantics)

	What have we learned today?
	Some Practice Exercises

