
2013W1-lecture20

October 27, 2013

Contents

1 Question of the Day 1

1.1 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Logistics 5

2.1 Programming Assignment #4 . . . . . . . . . . . . . . . . . . 5
2.2 Conceptual Assignment 4 corrections due Tue . . . . . . . . . 5
2.3 Midterm exam one week from Tue . . . . . . . . . . . . . . . 5

3 What have we learned today? 5

4 Some Practice Exercises 5

1 Question of the Day

What does the abstract syntax tree for this program look like?

(let-rec ((f (lambda (n)

(if (= n 0)

1

(f (sub1 n))))))

(f 2))

NOTE: I ACCIDENTALLY USED let IN THE ORIGINAL

VERSION! let does not work because its binding�for f in this case�is
not available in the value expression we evaluate to get f's value. let-rec,
on the other hand, allows us to de�ne recursive functions.

1



There are di�erent options for how to do this, one of which is the way
you solved deffun for the ParselDesugar assignments: use something like a
let to bind f to a dummy value; then, inside the body (where the f binding
is available!), assign the real value to f before evaluating the body of the
let-rec.

1.1 Solution

You should be able to draw this yourself! I used this slightly di�erent pro-
gram (which matches the syntax I had in my interpreter):

(let-rec (f (lambda (n)

(if (= n 0)

1

(f (+ n -1)))))

(f 2))

Here's what my program automatically created for the abstract syntax
tree:

2



3



Notice how in this tree you can check whether an identi�er is bound just
by traversing up the tree from the identi�er reference. Also, you can tell
where a binding is available by looking down the tree into subtrees.

(If I had used a let rather than a let-rec, only the body subtree would
have the let's binding available, not the val subtree.)

We can also talk about the function call tree: a tree showing the recursive
function calls in our program. In a language like Java, we'd usually literally
only consider actual function calls. When we're writing an interpreter, how-
ever, it's more interesting to look at each recursive call to interp (which will
include a recursive call to invoke a function in the function application case).
Here's what my program automatically produces for our little program:

Notice the call edges representing the initial and recursive calls to the
function (referred to by) f. If we compare our �location� in the code in the
function call tree to the abstract syntax tree, we see that the function call

4



tree can �jump� from one place in the AST to another, including (on the
recursive calls) from a descendant of a node in the AST back up to the node.

The store �ows left-to-right and top-to-bottom in the function call tree.

2 Logistics

2.1 Programming Assignment #4

It's out; the milestone is due Sunday.
Get started, but be sure to read the chapter on state (Chapter 8) �rst!

2.2 Conceptual Assignment 4 corrections due Tue

2.3 Midterm exam one week from Tue

3 What have we learned today?

� From QotD: What do our various ��ows� look like when we draw them
out? Learning goals:

� Draw the abstract syntax tree for a program

� Draw the function call tree for a program

� Identify how values and the store �ow through the function call
tree

� Explain why it's di�cult to show how values/store �ow through
the AST

� Explain how the environment can be understood both in terms of
the AST�in its �shape� (the identi�ers bound at a given point)�
and the function call tree�in its values.

4 Some Practice Exercises

Recording practice exercises we mention over time.

� Imagine we wanted to introduce something sort of halfway between
let and set!. We'll call it sleet. In a language that otherwise has
static scoping, (sleet id value-expr body-expr) introduces a new
dynamic binding for id. If a static binding for id already exists in the
current scope, that produces an error. If a dynamic binding already
exists, this sleet shadows it. (We'll assume we cannot use set! on

5



sleet-bound variables.) An id reference will always be to a static
binding if one exists; otherwise, it will �nd dynamic (sleet) bindings.

� Use a core language with sleet to desugar (deffun name funbody

body), and discuss why it's easier than with let.

� Imagine implementing sleet by passing two environments into
interp, static-env and dynamic-env. Implement the appC,
funcC, and idC cases for the interpreter, being sure to manage
the two separate environments correctly. (Do closures need one
environment or two??)

� Describe any concerns you have about sleet from a software en-
gineering perspective.

� Implement a new syntactic form incr! that takes a variable and adds
one to its value.

� Implement a new syntactic form time-maximum that evaluates to the
largest value a variable has ever contained. Discuss whether we could
incorporate this into a mainstream language. (Could we do it with
desugaring rather than changing the underlying language?)

� Implement a new syntactic form count-bindings. It takes a single
argument�a symbol�and evaluates to the number of bindings for
that symbol presently in the environment (so, more than 1 if there's
both a binding and at least one shadowed binding).

� Create multiple-argument functions and applications in a surface lan-
guage by desugaring them to one-argument functions and applications
in the core.

� Assume you have a language with multiple-argument function de�ni-
tions and applications as well as lists (cons, �rst, rest, and empty?)
in the core. Implement a new core form apply that takes a function
expression and an argument list expression, checks that they evaluate
to the appropriate types (function value and list), and then applies
the function to the list of arguments. apply should give an arity (i.e.,
number of arguments) error if the length of the list of arguments does
not match the length of the list of parameters for the function.

� Now, desugar as much of this as you can to a core that has only
single-argument function de�nition and application. Discuss why
the arity check, in particular, is very hard to manage in the

6



desugaring. (Hint: when you apply a �two-argument function�
to just one argument in this desugaring, the natural result is to
get a function back waiting for the second argument. Is such a
value illegal or unreasonable as a �normal value� in a language
with �rst-class functions?)

7


	Question of the Day
	Solution

	Logistics
	Programming Assignment #4
	Conceptual Assignment 4 corrections due Tue
	Midterm exam one week from Tue

	What have we learned today?
	Some Practice Exercises

