
2013W1-lecture2

September 16, 2013

Contents

1 Question of the Day 1

1.1 Solution . 2

2 DONE Logistics 3

2.1 DONE Prereq letters . 3
2.2 DONE Programming Assignment and Quiz dates/times . . . 3
2.3 DONEHow Do I Get Steve's {Awesome, Primitive, Whacked-

Out} Text Editor? . 3
2.4 Meet your TAs! . 4

3 DONE Finishing Last Lecture :) 4

4 Concrete Syntax, Parsing, and Abstract Syntax 4

4.1 Extending the Parser to �Non-Deterministic Values� 6

5 What have we learned today? 8

1 Question of the Day

You have a collection of associations: names and values. (For example, the
variables in a function.) Given a name, you want to �nd and/or set its value.

Brainstorm fast ways to do it.
What are some of the fastest your neighborhood can come up with?

1

1.1 Solution

An unordered list of key/value pairs would be a pretty slow way to do it,
but that's what we'll do for a while. Why? Because it won't really be
�unordered�. We'll use the order to describe something else: scope, where
and when an identi�er (like a variable name) is visible.

Other faster ways:

� Ordered list?

� Binary search tree

� Self-balancing binary search tree

� Splay trees (whatever they are)

� Hash Table (not even close to the fastest way)

Now, what if all the keys were just indexes of an array? Lookup would
be blazingly fast. That's e�ectively what compilers do with variable lookup:
statically replace the lookup with the address of the value!

Try compiling this code in C to assembly and look for the names of the
variables. Are they there?

int i;

int n;

int sum = 0;

/* When I execute this inside the block, it doesn't ask me for a

number; it just uses 47 for some reason. Well, OK! */

scanf("Enter a positive integer: %d", &n);

for (i = 1; i <= n; i++)

sum += i;

printf("The sum from 1 to %d is: %d.\n", n, sum);

Below is the loop in main. Check out the line before L2:, where we add
1 to i. i itself (the name) is gone. i's value is stored 28 bytes after the
address stored in %esp.

%esp is the �stack pointer�. It basically holds the address where the
current function's local variables live.

Can you �nd n and sum?

2

...

movl $1, 28(%esp)

jmp L2

L3:

movl 28(%esp), %eax

addl %eax, 24(%esp)

addl $1, 28(%esp)

L2:

movl 20(%esp), %eax

cmpl %eax, 28(%esp)

jle L3

...

2 DONE Logistics

2.1 DONE Prereq letters

2.2 DONE Programming Assignment and Quiz dates/times

� PAs: due Fridays at 8PM right now (next one: 13 Sep @ 8PM!)

� Quizzes: start of class Wed's right now. (next one: Wednesday!)

� Thoughts on how to allow those not attending to participate?
(For pedagogical reasons, we must give the correct answers im-
mediately after taking the quiz.)

� CAs: due Tuesdays at 8PM right now

2.3 DONE How Do I Get Steve's {Awesome, Primitive,
Whacked-Out} Text Editor?

I use an editor called emacs. It does everything and the kitchen sink. Demon-
stration: M-x tetris.

Is emacs worth learning? Depends on whether you have tremendous
patience and free time.

Inside emacs, Org Mode and its Babel module let me do all the nifty
stu� you've seen in class. (I've made a few minor customizations; if you
have trouble getting what I get, post to Piazza. As soon as I have time, I
want to extend Babel to allow Racket or �nd where someone has already
done so.)

3

2.4 Meet your TAs!

At the end of class.

3 DONE Finishing Last Lecture :)

�le:2013W1-lecture1.org

4 Concrete Syntax, Parsing, and Abstract Syntax

What is 7 + 2 * 3 - 6?
How do you know?
Let's draw a version that's better for performing the implied computa-

tion.

-

/ \

/ \

/ \

+ 6

/ \

/ \

/ \

7 *

/ \

/ \

/ \

2 3

7 + 2 * 3 - 6 is contrete syntax, the text the programmer (or some
other program!) creates.

Our drawing is abstract syntax : an internal representation of the
program�usually in tree form: an abstract syntax tree�designed to be easy
to for the next stage to use.

In this case, we're the next stage. If an interpreter to run our program
were the next stage, a drawing would not be a good abstract syntax. Instead,
we use a recursive datatype like the ArithC the book introduced, but it's the
same idea as the tree:

(define-type ArithC

4

file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-lecture1.org

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)]

[minusC (l : ArithC) (r : ArithC)]) ; added to express the '-'

;; Wait a minute. CAN we parse 7 + 2 * 3 - 6 into this datatype?

;; It's not in the "s-expression" format like read consumes.

(minusC (plusC (numC 7) (multC (numC 2) (numC 3))) (numC 6))

SOLUTION

#+BEGIN_latex

\begin{verbatim}

;; Can you see the tree structure?

(minusC (plusC (numC 7)

(multC (numC 2)

(numC 3)))

(numC 6))

+ENDlatex
Can we draw a tree representing an ArithC value?

minusC

/ \

l/ \r

/ \

plusC numC

/ \ :

l/ \r :n

/ \ :

numC multC 6

: / \

n: l/ \r

: / \

7 numC numC

: :

n: n:

: :

2 3

Parsers turn concrete syntax into abstract syntax. They can even let
us match up di�erent concrete syntaxes with the same abstract syntax.

5

Interpreters or compilers (and other processes we'll learn about later) act on
that abstract syntax.

And.. that's about it for parsers!

4.1 Extending the Parser to �Non-Deterministic Values�

If we have extra time, let's extend the book's parser and AST to allow a new
construct: �non-deterministic values�. A non-deterministic value is one of a
set of provided numbers, but we don't know which one for sure. We might
write them like this in in�x notation:

[2, 3, 5] + [8, 10]

Or like this in Racket-like notation:

(+ (? 2 3 5) (? 8 10))

Is there anything else we should decide before proceeding?

� order of operations (BEDMAS??)

� What does ? do? What's its semantics? (Is it exactly one of 2 3 5? Is
it some subset?)

� Can we still write (+ 2 3)? Sure. (+ (? 2) (? 3))

� Can we write (+ (?) 3)? No, we decided.

; What's our syntax? We'll use EBNF---Extended Backus-Naur Form---to

; describe it.

; In our version of EBNF, anything in <...> is expanded according to a

; rule. The left side of the rule tells what we're expanding. The

; right side tells what it can expand into. '::=' separates the left

; and right. '|' separates options on the right. Anything else is

; just literally what the user would type, except our little comment

; about Racket numbers :)

; John Backus received the Turing Award in large part for developing

; this language for specifying the syntax of programming languages!

;; Original version:

6

; <expr> ::= <addition>

; | <multiplication>

; | <number>

;

; <addition> ::= (+ <expr> <expr>)

;

; <multiplication> ::= (* <expr> <expr>)

;

; <number> ::= a valid Racket number

;; Our new version:

; <expr> ::= <addition>

; | <multiplication>

; | <nondetnum>

;

; <addition> ::= (+ <expr> <expr>)

;

; <multiplication> ::= (* <expr> <expr>)

;

; <nondetnum> ::= (? <non-empty-list-of-numbers>)

;

; <non-empty-list-of-numbers> ::= <number>

; | <number> <non-empty-list-of-numbers>

;

; <number> ::= a valid Racket number

(define-type ArithC

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)])

; Consumes concrete syntax and produces an ArithC AST.

; (Reports an error for invalid syntax.)

(define (parse [s : s-expression]) : ArithC

(cond

[(s-exp-number? s) (numC (s-exp->number s))]

[(s-exp-list? s)

(let ([sl (s-exp->list s)])

(case (s-exp->symbol (first sl))

7

[(+) (plusC (parse (second sl)) (parse (third sl)))]

[(*) (multC (parse (second sl)) (parse (third sl)))]

[else (error 'parse "invalid list input")]))]

[else (error 'parse "invalid input")]))

5 What have we learned today?

� From the QotD

� De�ne the term �environment�: a program's mapping from iden-
ti�ers (names) to values. (Note that later on we'll look at how
di�erent program analyses can make use of environments that
map identi�ers to other quantities.)

� Compare and contrast static and dynamic solutions to a problem.
(In this case, statically and dynamically mapping identi�ers to
values.)

� (Begin on:) Discriminate among concepts that impact the seman-
tics of a programming language and those that do not. (The form
we use to implement a program's environment does not (necessar-
ily) have any semantic e�ect. Use of hash tables, unordered asso-
ciation lists, and static replacement of identi�ers with addresses�
used appropriately�all produce programs with the same meaning.)

� Believe that you can quickly begin to assess a new programming
language with the tools you learn in this course. (Not really an
assessable goal, but I hope you'll start feeling that way as we do
examples like these!)

� Syntax and Parsers

� De�ne the terms �concrete syntax�, �abstract syntax�, �abstract
syntax tree�, and �parser�.

� Translate among: (1) concrete syntaxes that you've studied ex-
plicitly or reasonably natural new concrete syntaxes, (2) a pro-
vided abstract syntax, and (3) sketched tree representations.

� Given a syntax, determine what purpose it might be best suited
to, and justify your answer.

� Design and understand simple parsers for given concrete/abstract
syntaxes.

8

� EBNF

� Roughly de�ne the term EBNF (Extended Backus Naur Form).
(A standard language for describing syntaxes.)

� Given the EBNF for a language:

* Determine whether some small snippets of code are legal syn-
tax.

* Write some small snippets of code.

� Given a desired modi�cation to a language and an EBNF, modify
the EBNF to describe the new language.

9

	Question of the Day
	Solution

	DONE Logistics
	DONE Prereq letters
	DONE Programming Assignment and Quiz dates/times
	DONE How Do I Get Steve's {Awesome, Primitive, Whacked-Out} Text Editor?
	Meet your TAs!

	DONE Finishing Last Lecture :)
	Concrete Syntax, Parsing, and Abstract Syntax
	Extending the Parser to ``Non-Deterministic Values''

	What have we learned today?

