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1 Question of the Day

What does the following C program do?

#include <stdio.h>

int * get_local_addr() {

int x;

return &x;

}

int set_addr(int * addr) {

int y = 0;

*addr = 888888888;

return y;

}

int main(int argc, char * argv[]) {

int * a = get_local_addr();

printf("%d\n", set_addr(a));

}

SOLUTION

The answer is "it depends".

In C, variables are bound to memory locations, and those memory

locations contain values. However, C also provides operators =&= and

=*= that allow us to compute the address a variable is bound to (=&=)

and find or change the value at a given address (=*=).

Because *values* are not statically scoped like variable bindings are,

that means that the memory location of a variable can escape the

static scope in which the variable is available. The variable can be

changed from outside of its scope.

In C++, memory locations can also be reused. In a practical language,

we *must* be able to reuse memory locations. Else, we can run out

even if we never use too much memory at the same time in our program.

Unfortunately, C++ allows the memory for a particular instance of a
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local variable to be reused as soon as the function call that created

that instance finishes executing, *even if* the address of that

variable is still around!

In our code, first get the address of a local variable. Then, we set

whatever the value at that address to =888888888=. It so happens on

my computer with my compiler and this code that that sets the local

variable I created in the new function to =888888888=, but we can

certainly imagine much more damaging situations!

(For example, try changing =int y= to =char y= or =double y=, changing

the return types and the =%d= appropriately. Did each do what you

thought they would?)

2 Logistics

2.1 Programming Assignment #4

It's out; the milestone is due Sunday.

Get started, but be sure to read the chapter on state (Chapter 8) �rst!

2.2 Neat PL research talk TOMORROW: 24 Oct, 3:30-

4:30PM, X836

One bonus point for attending and posting a brief summary of the talk from

the CPSC 311 perspective.

Two bonus points for attending and posting a thoughtful, thorough dis-

cussion of the talk.

Three bonus points for being the speaker. :)

TypeScript is a programming language whose goal is to support develop-

ment of large JavaScript programs. TypeScript is a superset of the current

JavaScript standard (ECMAScript 5) that adds an optional static type sys-

tem to JavaScript. TypeScript exists only to support high-level thinking

about JavaScript programs; it has no impact on runtime behavior. Because

of this, TypeScript is an example of �types for tooling� vs. the more tra-

ditional idea of �types for runtime safety.� TypeScript has a novel design

for type inference; the goal of the design is to provide maximum conve-

nience (few annotations required) and transparency (chains of inference are

clear and local). The TypeScript compiler, incremental static analysis tools,

and speci�cation are open source (see typescriptlang.org). Several million

3

http://typescriptlang.org


lines of TypeScript are part of shipping Microsoft products. Since the com-

munity preview release in October, 2012, several 100K+ line TypeScript

projects have grown up outside of Microsoft and the TypeScript community

has created a site, at github.com, that holds over 100 community-maintained

TypeScript descriptions of popular JavaScript frameworks such as jQuery.

Steve Lucco is a Technical Fellow at Microsoft, where he is responsible for

Microsoft's web development tools and runtimes. He led the development

of Microsoft's Chakra JavaScript engine, which powers Internet Explorer.

Currently, Chakra is 30% faster than Chrome V8 on SunSpider, the most

widely cited JavaScript benchmark. He started the TypeScript team and

contributes to the design and implementation of TypeScript.

2.3 Quiz!

3 From Expression Closures to Function Closures

PROBABLY DEFERRED to when we discuss recursion, since we already

hit the big points.

Quick review of �le:2013W1-lecture18.org

4 Mutation and State: A Brand New Flow (sort
of)

(Note: we'll leave the �Church� part of �Church or State� for later. That's

Alonzo Church and, particularly, his �Church numerals�, that allow us to

encode numbers using only function de�nition and application.)

4.1 Three Flows through the Program

Let's look at a program that uses map again:

(define (map f lox)

(if (empty? lox)

empty

(cons (f (first lox))

(map f (rest lox)))))

(define (label-size mid lon)

(map (lambda (n)

(cond [(< n mid) 'small]
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[(= n mid) 'medium]

[(> n mid) 'large]))

lon))

We've discussed three ��ows� through our programs so far:

1. Lexical: The lexical ��ow� de�nes the scope of variables in our pro-

grams. In our program, I know label-size's parameters mid and lon

are not bound in map, even though label-size calls map!

If I didn't know that, I'd have to fear that any function called from one

of my functions could change my own local variables. Even without

side e�ects, this can be a problem, because other functions may rely

on knowing the names and uses of my local variables, making changing

the code for my function much more di�cult and error-prone later on.

2. Function-Call: On the other hand, the �ow of control in our pro-

gram follows function calls, and we want it to do so! Otherwise, we

couldn't call map from label-size, and map couldn't then call �back

into� the lambda de�ned inside label-size. Instead, we'd have a

language where the �ow of control always follows the �shape� of the

program�like our rather unimpressive �calculator� languages from the

start of the term!

Unfortunately, this �ow is so fundamental to functions that it's hard

to see. A more illustrative example is exceptions. In Java, for example,

I might call two functions one after another:

public static int mymethod() {

int x = function1();

return function2(x);

}

I expect to receive exceptions raised in either of the functions I call

(or in functions they call) in mymethod. If function1 raises an

IOException but I know how to handle it in mymethod, I should be

able to do so! That's because exceptions travel back up the function

call chain, going backward along the �ow we're discussing.

On the other hand, if function1 raises an IOException, I do not ex-

pect that exception to go on to function2. It either gets handled in the

chain of function calls leading to function1�in this case, function1,

5



mymethod, whatever function called my-method, whatever called that

function, and so on�or it doesn't get handled at all.

Together these two ideas de�ne our function-call �ow.

3. Persistent: Our third �ow through the program is persistent �ow. We

haven't discussed this one much, which might make it feel new, but it

isn't really. Both our map example and our Java example illustrate it.

In the map example, consider the symbol small, which is one of our val-

ues. It's produced within the lexical scope (the body) of label-size,

yet it clearly passes through map as map produces a list of values small,

medium, and big. So, the value doesn't just follow lexical scope.

However, values also don't just follow function-call scope. We might

write a piece of code to use label-size like:

(local [(define result (label-size 0 (list -5 5 0 1)))]

(display result))

Our value small makes it out of label-size but then goes back into

the display function, yet display never called label-size, and

label-size never called display. Instead, the value just persisted

(continued) through the progress of the program after it was created.

Similarly, function1 above computed a value and returned it to

my-method. Clearly, that value isn't following lexical scope, because

the local scope inside function1 is somewhere totally separate from

the local scope inside my-method.

But the value also didn't stop at my-method or �ow back to the function

that called it. Instead, we passed it along to function2.

In fact, depending on how we write our code, a value we compute at

any point in the run of our program can make it to any later point in

our program. Values can persist throughout the life of our program!

4.2 State Changes Do Not Follow Lexical Flow

Hopefully you already �gured out that I think state changes follow persistent

�ow, but let's show that it's true.

It's hard to even describe what we might mean by state changes only

following lexical �ow. That's because something like set! doesn't even have

a nested �body� where this lexical �ow can go. It only has the variable we're

setting and the expression that gives the value for that variable:
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(set! variable value-expr)

If we tried to give it a body:

(set! variable value-expr body-expr)

We'd end up with something that looks much more like a let than a

set!!

4.3 State Changes Do Not Follow Function-Call Flow

Let's show that state changes do not follow function-call �ow.

Consider the following code, assuming that + evaluates its actual param-

eters from left-to-right:

(let ((f (lambda (x) ...))

(g (lambda (y) ...))

(b (box 0)))

(+ (f b) (g b)))

By the time we start evaluating the function g, the call to the function

f has �nished. So, the call to g is not part of the function-call chain that

starts at f.

However, state changes in f can still be seen in g.

Write bodies for f and g so that f makes a state change that �ows into

g.

Reminder:

� box constructs a data structure that contains the value of its argument.

� set-box! evaluates its �rst argument to a box value and then replaces

the box's contents with the value of its second argument.

� unbox evaluates to the contents of the box value that it gets from

evaluating its argument.

SOLUTION

Essentially anything that changes the value in b's box in f and then

accesses that value in g works:

(let ((f (lambda (x) (set-box! x 1)))

(g (lambda (y) (unbox x)))
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(b (box 0)))

(+ (f b) (g b)))

This evaluates to 2---not 1---because the change to x inside the

function f is visible inside the call to g.

4.4 How Can We Implement the Flow for State Changes?

Why reinvent the wheel? We already said values follow persistent �ow. How

do they do that?

How does the 1 in this code get from inside of f to inside of g in this

code? In our interpreter?

(let (g (lambda (y) (+ y y)))

(let (f (lambda (x) 1))

(g (f 0))))

SOLUTION

In the code, f RETURNS the value 1, which is then PASSED to g as a

parameter. Interestingly, our interpreter uses the same solution to

let values flow where they will.

Look at the app case of our interpreter. Here's a shortened version

of what I used to implement the Chapter 7 interpreter:

[appC (fun-exp arg-exp)

(local [(define fv (interp fun-exp env)) ;; Get the closure (fun value)

(define av (interp arg-exp env))] ;; Get the arg value

(interp (closV-body fv) ;; Call the function!

(extend-env (bind (closV-arg fv) av)

(closV-env fv))))]

At some point, we're evaluating (g (f 0)); so, fun-exp is g and

arg-exp is (f 0).

On the line marked "Get the arg value", we make a recursive call to

interp to evaluate (f 0).

In that recursive call, fun-exp is f and arg-exp is 0. On the line

marked "Call the function!", we recursively call interp to evaluate
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the body of f, which is just 1. That call RETURNS the value 1.

So, values flow OUT of function calls through the return value of

interp.

That 1 is then returned (flows out) from the call to interp that

evaluated (f 0).

We're back to the line marked "Get the arg value" in the call to

interp where we're interpreting (g (f 0)), but now we have the value 1

in av.

How does g get access to the value 1? Our interpreter evaluates the

body of g on the line marked "Call the function!". It includes the

value 1 in the environment data structure it PASSES to the that

recursive call.

In other words, values can follow persistent flow because they're

PASSED IN AS ARGUMENTS to interp and also RETURNED AS RESULTS.

4.5 Implementing State Changes in our Interpreter

We'll call the data structure we use to record state changes the store. We

need to pass it as an argument to interp and return it as a result

from interp so that it can follow persistent �ow.

We will pass in a store representing the state of the world just before the

call to interp evaluates.

In turn, interp will return a store representing the state of the world

just after the call to interp �nishes evaluating.

4.5.1 Trivial Cases

We might know there are no changes to the store in a call to interp, in

which case, we just give back the same store.

Fill in our numC case below.

(WARNING: For lecture, I use tuples to return two values from interp,

which is what you might do in C++ with the templated pair class. To work

with tuples in plai-typed, use (values ... ...) to create a tuple and

(define-values (name1 name2) ...) in a local's de�nitions to pull one

apart. Both the ParselTongue core implementation and the textbook instead
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create a data structure to do the same thing, which is what you'd do in Java.

There's no meaningful semantic di�erence.)

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

[numC (n) ;; Fill me in!

]

...))

SOLUTION

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

;; The value is just the number n.

;; The new store is the same as the old one.

[numC (n) (values (numV n) store)]

...))

4.5.2 �Threading the Store� through Recursive Calls

There might be no obvious changes in a call, but the call might make recur-

sive calls that could themselves make changes.

Consider the beginC case in our interpreter (the equivalent of seqC in

ParselTongue).

Changes to the store caused by evaluating the �rst expression had better

be re�ected in the store given to second expression! Otherwise, what was

the point of the �rst expression at all?

Fill in the beginC case:

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

[beginC (e1 e2) ;; Fill me in!

(local [(define-value (e1-result e1-store) (interp e1 env store))]
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]

...))

SOLUTION

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

[beginC (e1 e2)

(local [(define-values (e1-value e1-store) (interp e1 env store))]

;; We've now evaluated the first expression.

;; However, the variable store may be out of date!

;; Good thing we have e1-store:

(interp e2 env e1-store))]

...))

Notice how e1-store represents the state of the world just AFTER the

first expression is evaluated and just BEFORE the second is evaluated.

Also notice that it's NOT the store we return. What store do we

return?

4.5.3 Accessing and Changing the Store

Some syntactic constructs actually directly access or change the store. Since

we're just using boxes, we'll focus on the most interesting box form: setboxC.

setboxC should evaluate its �rst expression to yield a box value. Then,

it should evaluate its second expression to yield a value to put in the box.

Finally, it should give back a store representing the state of the world in

which the box's new contents are the new value.

Be careful! setboxC not only changes the store directly, it also makes

two recursive calls to interp!

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

[setboxC (be ve) ;; Fill me in!
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]

...))

SOLUTION

(define (interp [expr : ExprC] [env : Env] [store : Store]) : (Value * Store)

(type-case ExprC expr

...

[setboxC (be ve) ;; Fill me in!

(local [(define-values (box-val be-store) (interp be env store))]

(local [(define-values (val ve-store) (interp ve env be-store))]

;; Why use be-store to evaluate ve?

(define-values (val ve-store) (interp ve env be-store))]

;; Why update ve-store rather than store or be-store?

(values val (update-store (cell (boxV-loc box-val) val)

ve-store)))]

...))

SOLUTION

By the way, this is one case where I personally recommend:

Don't take advantage of the fact that locals let you do multiple

definitions per line. Do just one definition and then nest another

local. Why?

Because then you can call EVERY store variable "store". Why?

Well, each new declaration of store will shadow the old declarations.

Why?

(This is starting to sound like a conversation with a two-year-old.)

(Why?)

Because then static scoping and shadowing ensure you never make the

mistake of using an out-of-date store!
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4.5.4 Closing Comment: Is This How State Is Implemented?

Of course not!!

What kind of crazy language would pretend to allow state changes but

implement them in a pure functional style by secretly threading a value

representing the current store through its computations?

(Cough cough, Haskell. Splutter, state monad.)

However, this does give us a clearer sense of how state changes �ow

through our program and what the semantics of state change are.

Remember how we said that dynamic scoping (which follows the simpler,

more constrained function-call �ow) is usually BAD for software engineering?

Discuss with your neighbor one good reason to use state change and one

good reason to avoid using it.

SOLUTION

Here's some thoughts.

State change often does a great job of representing the world,

particularly if you're representing something about the world that

authentically changes with time. It's also a "cheap" way of

"communicating" between distant parts of your program.

But all that comes at a BIG cost.

Mutation or state change makes it HARD to reason about how programs

work. In fact, compiler analyses will often try to effectively "break

up" a variable according to how its possible values move around (e.g.,

see Data-Flow Analysis) in order to isolate the impact of mutation.

Parallelism is especially impacted by mutation. In the most efficient

parallel computations, individual processes solve their own problems

with no communication between them. However, each state change in one

process that is (or, in some cases, *could be*) visible to another

mucks up that independent processing with communication and

synchronization.

5 What have we learned today?

� From QotD: An industrial programming language (in fact most!) has

the same two-step lookup that we're modelling with our language with
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mutation: variables bound to �store� locations and values in the store

locations. However, the fact that the store �ows through the program

by a di�erent route than either variable scope (static) or the dynamic

call structure of a program (corresponding to �dynamic scope�) can

cause big problems!

� State Change as a new-ish Flow (�Persistent� vs. �Lexical� or

�Function-Call�)

� Justify with examples that the �ow of state changes in a program

does not match either of the �ows we have so far discussed: lexical

(i.e., the �ow that static scoping follows) or function-call (i.e., the

�ow that dynamic scoping follows).

� Implement this �ow without using mutation in the imple-

mentation using store-threading style: passing a store represent-

ing the state before an operation as an extra parameter to that

operation and returning a store representing the state after an

operation as an extra result from that operation.

� Unnecessary State Change as a �Bad Thing�

� Explain from a software engineering standpoint why (unnecessary

or excessive) use of mutation can make software more di�cult to

reason about and change.

6 Some Practice Exercises

Recording practice exercises we mention over time.

� Imagine we wanted to introduce something sort of halfway between

let and set!. We'll call it sleet. In a language that otherwise has

static scoping, (sleet id value-expr body-expr) introduces a new

dynamic binding for id. If a static binding for id already exists in the

current scope, that produces an error. If a dynamic binding already

exists, this sleet shadows it. (We'll assume we cannot use set! on

sleet-bound variables.) An id reference will always be to a static

binding if one exists; otherwise, it will �nd dynamic (sleet) bindings.

� Use a core language with sleet to desugar (deffun name funbody

body), and discuss why it's easier than with let.
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� Imagine implementing sleet by passing two environments into

interp, static-env and dynamic-env. Implement the appC,

funcC, and idC cases for the interpreter, being sure to manage

the two separate environments correctly. (Do closures need one

environment or two??)

� Describe any concerns you have about sleet from a software en-

gineering perspective.

� Implement a new syntactic form incr! that takes a variable and adds

one to its value.

� Implement a new syntactic form time-maximum that evaluates to the

largest value a variable has ever contained. Discuss whether we could

incorporate this into a mainstream language. (Could we do it with

desugaring rather than changing the underlying language?)

� Implement a new syntactic form count-bindings. It takes a single

argument�a symbol�and evaluates to the number of bindings for

that symbol presently in the environment (so, more than 1 if there's

both a binding and at least one shadowed binding).

� Create multiple-argument functions and applications in a surface lan-

guage by desugaring them to one-argument functions and applications

in the core.

� Assume you have a language with multiple-argument function de�ni-

tions and applications as well as lists (cons, �rst, rest, and empty?)

in the core. Implement a new core form apply that takes a function

expression and an argument list expression, checks that they evaluate

to the appropriate types (function value and list), and then applies

the function to the list of arguments. apply should give an arity (i.e.,

number of arguments) error if the length of the list of arguments does

not match the length of the list of parameters for the function.

� Now, desugar as much of this as you can to a core that has only

single-argument function de�nition and application. Discuss why

the arity check, in particular, is very hard to manage in the

desugaring. (Hint: when you apply a �two-argument function�

to just one argument in this desugaring, the natural result is to

get a function back waiting for the second argument. Is such a

value illegal or unreasonable as a �normal value� in a language

with �rst-class functions?)
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