
2013W1-lecture18

October 22, 2013

Contents

1 Question of the Day 1

2 Logistics 3

2.1 Quiz on Wednesday! . 3

2.2 Programming Assignment #4 3

2.3 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836 3

3 Lazy Evaluation with Environments 4

4 First-Class Functions 4

4.1 Expression Closures: Almost Function Values! 4

4.2 Getting to Closures: Function Values 5

4.3 Closures! . 6

4.4 Done: Functions Anywhere 7

5 What have we learned today? 9

6 Some Practice Exercises 9

1 Question of the Day

In classical comutation, a bit can be either 0 or 1.

In quantum computation, a qubit can be in a superposition of the states

0 and 1. (As with classical computation, these labels are arbitrary; unlike

with classical computation, alternate labelings can be quite meaningfully

di�erent.)

1

Worse yet, a system of multiple qubits cannot necessarily be described

by simply independently describing its individual qubits. (For example, two

qubits can be (but don't have to be!) entangled in such a way that measuring

one of the qubits will give the value 0 with probability one-half or the value 1

with probability one-half, but measuring the other one afterward will always

give the same value you get from measuring the �rst.)

So, how do you program these things?

SOLUTION

So far, we don't really know! Work on programming them is going in

multiple directions simultaneously, however. (As usual, Wikipedia is

a good place to start:

http://en.wikipedia.org/wiki/Quantum_programming.)

People have introduced basic machines to model quantum systems. These

include three models closely corresponding to common classical models

of computation:

+ Quantum circuits (analogous to classical circuits, which you'd learn

about in CPSC 121)

+ Quantam Turing Machines (analogous to classical Turing Machines, a

super-simple abstract computer model, which you'd learn about in

CPSC 421)

+ Quantum lambda-calculi (analagous to lambda calculus, a fundamental

description of computation using nothing but function definition and

application.. which we'll learn about today!).

These models are necessary to understand what we're describing when we

write high-level quantum programs and to prove properties of the

programs (e.g., that we won't accidentally perform operations that

cause "decoherence"---collapsing of quantum states).

There's also much work on high-level languages for programming. I'll

pick on QCL, the language I know the most about (which isn't much!).

Here's some choice quotes from Bernhard Omer's QCL thesis

(http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf): "The purpose of

programming languages is therefore twofold, as they allow the

expression of a computation's semantics in an abstract manner, as well

as the automated generation of a sequence of elementary operations to

control the computing device."

2

In other words, a programming language provides an interface to the

programmer that enables abstraction and an interface to the underlying

system that enables execution. (We talk about a few other purposes,

including analysis!, which can be pretty important in quantum

computation as well!)

He then specifically highlights the importance of subroutines

(functions) in providing:

+ Functional Abstraction (i.e., functions with parameters let us

generalize frequently used code into a single reusable definition)

+ Hierarchical Program Structure (i.e., allowing functions to call

other functions enables programmers to define abstractions atop

their own abstractions)

+ Recursion (i.e., allowing functions to call themselves enables

programmers to express powerful control structures and algorithms)

+ Private Scopes and Local Variables (i.e., static scoping allows us

to hide and protect implementation details to make software clearer

and easier to change)

So, let's get functional!

2 Logistics

2.1 Quiz on Wednesday!

2.2 Programming Assignment #4

It's out; the milestone is due Sunday.

Get started, but be sure to read the chapter on state (Chapter 8) �rst!

2.3 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM,

X836

One bonus point for attending and posting a brief summary of the talk from

the CPSC 311 perspective.

Two bonus points for attending and posting a thoughtful, thorough dis-

cussion of the talk.

Three bonus points for being the speaker. :)

3

TypeScript is a programming language whose goal is to support develop-

ment of large JavaScript programs. TypeScript is a superset of the current

JavaScript standard (ECMAScript 5) that adds an optional static type sys-

tem to JavaScript. TypeScript exists only to support high-level thinking

about JavaScript programs; it has no impact on runtime behavior. Because

of this, TypeScript is an example of �types for tooling� vs. the more tra-

ditional idea of �types for runtime safety.� TypeScript has a novel design

for type inference; the goal of the design is to provide maximum conve-

nience (few annotations required) and transparency (chains of inference are

clear and local). The TypeScript compiler, incremental static analysis tools,

and speci�cation are open source (see typescriptlang.org). Several million

lines of TypeScript are part of shipping Microsoft products. Since the com-

munity preview release in October, 2012, several 100K+ line TypeScript

projects have grown up outside of Microsoft and the TypeScript community

has created a site, at github.com, that holds over 100 community-maintained

TypeScript descriptions of popular JavaScript frameworks such as jQuery.

Steve Lucco is a Technical Fellow at Microsoft, where he is responsible for

Microsoft's web development tools and runtimes. He led the development

of Microsoft's Chakra JavaScript engine, which powers Internet Explorer.

Currently, Chakra is 30% faster than Chrome V8 on SunSpider, the most

widely cited JavaScript benchmark. He started the TypeScript team and

contributes to the design and implementation of TypeScript.

3 Lazy Evaluation with Environments

Finishing �le:2013W1-lecture16.org!

4 First-Class Functions

4.1 Expression Closures: Almost Function Values!

We said our functions had four key purposes:

� delaying evaluation of the function body,

� allowing evaluation of the function body from (possibly distant) loca-

tions in the program,

� blocking out bindings from the function's dynamic context, and

� �allowing in� a dynamic value via the parameter(s).

4

http://typescriptlang.org
https://github.com/borisyankov/DefinitelyTyped
file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-lecture16.org

We now have �expression closures�, which are very much like values rep-

resenting functions.

If we can get to a full value representation, we can de�ne a function

anywhere and evaluate it to one of these values. We could also then pass

function values as parameters, return them as results from functions, and

generally manipulate them in very powerful ways! For example, we'd be

able to write and use the map function.

Which of our four purposes do our expression closure values support?

SOLUTION

They definitely support delaying evaluation of the expression (which

can be the function body). That's the whole reason we introduced

them: for lazy evaluation!

Similarly, they clearly allow evaluating the expression from possibly

distant locations in the program.

They also block out the dynamic scope where they're evaluated,

replacing it with the static scope where the expression initially

appeared in the program.

They do not, however, allow in dynamic values(s) via the parameter(s).

4.2 Getting to Closures: Function Values

We're only missing binding parameter names to values supplied by dynamic

context. What do we need to add to closures to allow this?

Do they need to store the parameter names? Do they need to store the

parameters' values?

SOLUTION

We do need to store the parameter names. Those are specified where

the function is defined, but we need to keep them around until the

function is applied. Since closures are function values, they must

store everything about the function definition that we need to keep

around until the function is applied.

We do not need to store the parameters' values. We don't know those

values until the moment the function is applied, and we know just what

to do with them when the function is applied: the same thing we've

5

already been doing! Bind the parameter names to their values in the

environment (the static environment in which the function was defined)

and use that extended environment to evaluate the function body.

4.3 Closures!

So, closures are function values. They include three parts: the parameter

name(s), the function body, and the environment in which the function was

de�ned. They're called �closures� because of the way they �close over� the

environment in which the function was de�ned and keep it around for when

the function is later applied.

Here's a data type we could use:

[closureV (param : symbol) (body : ExprC) (env : Env)]

Now we can de�ne functions using syntax like:

(define double (lambda (x) (+ x x)))

Or using syntactic sugar for this same style like:

(define (double x) (+ x x))

In our core syntax, that might look like:

(LetC 'double (FuncC 'x (PlusC (IdC 'x) (IdC 'x))) ...)

where the ... gets replaced by the rest of the program.

Let's �ll in the FuncC and AppC cases of the interpreter now that we have

this. Note: we're going back to eager evaluation. We just exploited lazy

evaluation as a way to motivate our desire to close over environments!

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

...

[FuncC (param body-expr)

...]

[AppC (fun-expr arg-expr)

...])

6

SOLUTION

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

...

[FuncC (param body-expr)

; A closure needs the parameter (given in the FuncC),

; the body (given in the FuncC), and the environment in

; which the function was defined. That environment is

; the current environment right NOW: the one passed to

; interp.

;

; Shouldn't we be recursively evaluating body-expr?

; No!! One of the main points of function definitions is

; that they defer evaluation of their bodies!

(closureV param body-expr env)]

[AppC (fun-expr arg-expr)

; A function application gets a function value from its

; first expression and applies the function inside to the

; value of its argument. Here's where we finally get to

; USE the env we tucked away wherever we defined the function.

(local [(define fun (interp fun-expr env))

(define arg (interp arg-expr env))]

(if (closureV? fun)

; The environment is the one in which the closure was

; defined, but as always, we also need to bind the parameter.

(interp (closureV-body fun)

(extend-env (bind (closureV-param fun) arg)

(closureV-env fun)))

(error 'interp "Attempt to apply a non-function.")))]))

4.4 Done: Functions Anywhere

That's it! Closures (function values) are just a tiny step from lazy evaluation

with environments.

It turns out that now that we have �rst-class functions, we can perform

any computation that any �real� language can perform. As a couple of ex-

amples:

1. Here's a desugaring of let to function de�nition and application:

7

(let (id bind-expr) body) becomes ((lambda (id) body) bind-expr)

2. Below is code to give us cons cells! I assume we have multi-argument

function de�nition and application (but we can desugar those to single-

argument function de�nition and application!).

; To implement a cons cell, we need to store the first and rest fields.

; If only we had some way to remember something until later! Oh, wait..

; we do: closures! A closure can remember values for us by toting its

; envorinment around.

;

; So, our strategy for cons is to get the first and rest fields and then

; produce a closure that will remember those. We'll have the closure

; accept a "selector" function that is given the two fields and can

; select which one is wanted.

;

; I'm going to add a third field that represents whether this cons cell

; is really the empty list. That's false for cons.

(let (cons (lambda (fst rst) (lambda (sel) (sel fst rst false))))

; Now, we need the first and rest functions. They just need to take

; cons cell and then give it an appropriate selector. first will

; give a selector that gives back the fst field and ignores rst.

; rest will do the opposite.

(let (first (lambda (cons-cell) (cons-cell (lambda (fst rst emp) fst))))

(let (rest (lambda (cons-cell) (cons-cell (lambda (fst rst emp) rst))))

; We still need an empty list and the empty? function. Those are

; pretty easy; they just focus on that third field that tells us

; whether a cons cell is empty.

;

; (Although they beg the question: how do we define true, false,

; and if using just functions? We can do it.. but we'll wait until

; later to discuss it.)

(let (empty (lambda (sel) (sel false false true)))

(let (empty? (lambda (cons-cell) (cons-cell (lambda (fst rst emp) emp))))

; Now, I'll make a list and get the second element back.

(first (rest (cons 1 (cons 2 (cons 3 empty))))))))))

8

5 What have we learned today?

� From QotD: How programming languages are venturing into a whole

new world of computation.. and how important what we've already

learned, particularly functions, is in making that new world work.

� From discussion of function closures:

� Implement (or analyse the code implementing) anonymous func-

tion de�nition and function application in a language with �rst-

class functions.

� Explain via an example how the power to �close over environ-

ments� turns out to provide tremendous power in programming

languages.

* In this case, the example we used was that we can get let-

bindings and lists (cons cells) using nothing more than func-

tions and function application once we have closures. The

let-bindings really just take advantage of the fact that we

can declare functions anywhere and that they bind parame-

ters to values. The cons cells, however, take advantage of the

fact that closures let us remember values for later use!

* In other words: closures are (in PL theory) the fundamen-

tal data structure from which all other data structures can

be built. Closures are awesome! Don't you wish you were

lambda bound?

6 Some Practice Exercises

Recording practice exercises we mention over time.

� Implement a new syntactic form count-bindings. It takes a single

argument�a symbol�and evaluates to the number of bindings for

that symbol presently in the environment (so, more than 1 if there's

both a binding and at least one shadowed binding).

� Create multiple-argument functions and applications in a surface lan-

guage by desugaring them to one-argument functions and applications

in the core.

� Assume you have a language with multiple-argument function de�ni-

tions and applications as well as lists (cons, �rst, rest, and empty?)

9

in the core. Implement a new core form apply that takes a function

expression and an argument list expression, checks that they evaluate

to the appropriate types (function value and list), and then applies

the function to the list of arguments. apply should give an arity (i.e.,

number of arguments) error if the length of the list of arguments does

not match the length of the list of parameters for the function.

� Now, desugar as much of this as you can to a core that has only

single-argument function de�nition and application. Discuss why

the arity check, in particular, is very hard to manage in the

desugaring. (Hint: when you apply a �two-argument function�

to just one argument in this desugaring, the natural result is to

get a function back waiting for the second argument. Is such a

value illegal or unreasonable as a �normal value� in a language

with �rst-class functions?)

10

	Question of the Day
	Logistics
	Quiz on Wednesday!
	Programming Assignment #4
	Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836

	Lazy Evaluation with Environments
	First-Class Functions
	Expression Closures: Almost Function Values!
	Getting to Closures: Function Values
	Closures!
	Done: Functions Anywhere

	What have we learned today?
	Some Practice Exercises

