
2013W1-lecture17

October 20, 2013

Contents

1 Question of the Day 1

2 Logistics 3

2.1 Some Midterm Evaluation Notes 3
2.1.1 Overall Comments . 3

2.2 Programming Assignment #4 4
2.3 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836 4

3 Lazy Evaluation with Environments 5

4 What have we learned today? 5

1 Question of the Day

Say, how do you compute the in�nite list of primes in Haskell? And, how
does that display the value of chaining lazy processes?

Gee. I'm glad you asked that question.

SOLUTION

-- A little syntax primer:

-- + Lines starting with -- are comments

-- + The colon operator : is an infix version of cons in Racket.

-- + We can partially evaluate an infix operator by putting it in parens

-- and giving it zero or one of its arguments. For example, (+) is

-- the addition function (as a normal, non-infix function). (3 -)

-- is a function of one argument that substracts its argument from 3.

1

-- + We can convert two-argument functions into infix operators by

-- enclosing them in backquotes like `mod`.

-- + The . operator is function composition. So, (f . g)(x) is the same

-- as f(g(x)).

ones = 1 : ones

naturals = 1 : (zipWith (+) ones naturals)

-- Look Ma, no base case!

sieve (prime:nums) = prime : sieve (filter (not . (\x -> x `mod` prime == 0)) nums)

-- In other words, the result of sieving (with, roughly, the Sieve of

-- Eratosthenes) out the numbers (prime:nums) is first prime (which is

-- assumed to be a prime) and then the result of sieving out what we get

-- back from filtering out multiples of prime from the remaining numbers.

-- So, once we've processed 2, we've introduced a filter "in the

-- pipeline" that will eliminate all multiples of 2. Once we've

-- processed 3, we've introduced a filter for all multiples of 3. Etc.

-- And here are the primes themselves. We start with 2, since it's our first prime.

-- Any time we begin a loop or recursive process by providing a first valid value,

-- we refer to that as "priming the pump", but it somehow seems ever-so-appropriate

-- here, doesn't it?

primes = sieve (tail naturals)

-- Now, let's run this in hugs (love that name!) and try:

-- take 10 primes

--

-- Warning: don't just say:

-- primes

--

-- What would happen if you did that?

2

2 Logistics

2.1 Some Midterm Evaluation Notes

2.1.1 Overall Comments

Comments were quite �spread out�, but a few comments stood out for lecture
(and the course in gen'l):

� Understanding how semantics di�er across languages was the most
commonly cited value of the course

� Good to hear! We will continue to try to bring in examples from
real languages, and collected quite a few promising thoughts and
questions from the fourth part of the eval

� Using a di�erent language than Racket (or plai-typed) was the most
common recommendation for improvement

� We (sort of) plan for that to happen on the �fth programming
assignment. I've personally been somewhat unimpressed by plai-
typed as a language, and I think some of the pain we're su�ering
is due to using that rather than Racket (or at least plai).

� That said, Scheme-like languages are very traditional for studying
programming languages because they have relatively simple and
clean syntax and semantics. (Compare to the level of detail we'd
need to get to learning the semantics of C++ if we used that as our
underlying language! You've seen me bring up the speci�cation a
few times. It's huge and terribly complex.)

� Requests for more practice exercises (and/or clearer practice exercises
than the midterm prep exercises) was next

� I'll do my best. Can you help by pinging me on Piazza with
requests for what you'd like practice on?

� Here's some questions to get started:

* Implement a new syntactic form count-bindings. It takes
a single argument�a symbol�and evaluates to the number
of bindings for that symbol presently in the environment (so,
more than 1 if there's both a binding and at least one shad-
owed binding).

3

* Once we have one-argument functions, create multiple-argument
functions and applications by desugaring them to one-argument
functions and applications.

For tutorial, most common comments:

� Tutorial content has been very helpful

� However, it's sometimes hard to tell whether everything has been cov-
ered. (Clearer notes/learning goals?)

For assignments, most common comments:

� Generally useful

� Instructions could be clearer

� (Can you post concrete examples to Piazza? Anon posting is �ne,
of course!)

� PA2 (ParselTest) did not contribute much

� In retrospect, I agree. I'll see if I can improve that one for the
future!

2.2 Programming Assignment #4

We're releasing it today. The milestone will probably be due in one week. It
will likely be due two weeks from today, but we need to determine when the
demos will occur. (The midterm gets in the way a bit.)

2.3 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM,

X836

One bonus point for attending and posting a brief summary of the talk from
the CPSC 311 perspective.

Two bonus points for attending and posting a thoughtful, thorough dis-
cussion of the talk.

Three bonus points for being the speaker. :)
TypeScript is a programming language whose goal is to support develop-

ment of large JavaScript programs. TypeScript is a superset of the current
JavaScript standard (ECMAScript 5) that adds an optional static type sys-
tem to JavaScript. TypeScript exists only to support high-level thinking
about JavaScript programs; it has no impact on runtime behavior. Because

4

of this, TypeScript is an example of �types for tooling� vs. the more tra-
ditional idea of �types for runtime safety.� TypeScript has a novel design
for type inference; the goal of the design is to provide maximum conve-
nience (few annotations required) and transparency (chains of inference are
clear and local). The TypeScript compiler, incremental static analysis tools,
and speci�cation are open source (see typescriptlang.org). Several million
lines of TypeScript are part of shipping Microsoft products. Since the com-
munity preview release in October, 2012, several 100K+ line TypeScript
projects have grown up outside of Microsoft and the TypeScript community
has created a site, at github.com, that holds over 100 community-maintained
TypeScript descriptions of popular JavaScript frameworks such as jQuery.

Steve Lucco is a Technical Fellow at Microsoft, where he is responsible for
Microsoft's web development tools and runtimes. He led the development
of Microsoft's Chakra JavaScript engine, which powers Internet Explorer.
Currently, Chakra is 30% faster than Chrome V8 on SunSpider, the most
widely cited JavaScript benchmark. He started the TypeScript team and
contributes to the design and implementation of TypeScript.

3 Lazy Evaluation with Environments

Back to lecture 16!

4 What have we learned today?

� From QotD: A (little) bit of the practical value of lazy evaluation.

ORGMODECONFIG

#+DRAWERS: SOLUTION ORGMODECONFIG

#+COMMENT TODO: change to d:nil (or delete) to not export SOLUTION drawers

#+OPTIONS: d:t

5

http://typescriptlang.org
https://github.com/borisyankov/DefinitelyTyped

	Question of the Day
	Logistics
	Some Midterm Evaluation Notes
	Overall Comments

	Programming Assignment #4
	Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836

	Lazy Evaluation with Environments
	What have we learned today?

