
2013W1-lecture14

October 20, 2013

Contents

1 Question of the Day 1

2 Logistics 2

2.1 Midterm #1: Tuesday (tomorrow!) 7PM in CHBE 101 2

2.2 No quiz on Wednesday . 2

2.3 Programming Assignment #3 2

2.4 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836 2

3 Environments and Scope (repeated from last class) 3

3.1 Scope: Static vs. Dynamic . 3

3.2 Environment . 4

3.2.1 Why lists for environments? 5

3.2.2 Important Side Note: Assignment vs. Binding 6

4 Environments: Breaking BAD BAD Test Cases 6

5 What have we learned today? 6

1 Question of the Day

What is the purpose of the following bash syntax? Why bother?

echo "${OLDPWD?oops}"

SOLUTION

$ introduces parameter substitution---usually replacing a reference to

1

an environment variable with its value. The {...} delineate the

expression. OLDPWD is the environment variable's name.

The question mark means "if the environment variable is set, use it,

as though this expression were just ${OLDPWD}; otherwise, print "oops"

and abort the current process with an exit status indicating an error,

specifically 1".

Why bother?

Environment variables are (effectively) supplied by whoever invokes

this process. They are DYNAMICALLY scoped. That means we have no

real clue except convention which environment variables are defined

and which are not!

This can be very powerful.. and can cause much trouble. See, e.g.:

http://peterlyons.com/problog/2010/02/environment-variables-considered-harmful

and

http://www.insectnation.org/howto/environment-variables-considered-harmful

(Thanks for the links, Wikipedia!)

2 Logistics

2.1 Midterm #1: Tuesday (tomorrow!) 7PM in CHBE 101

2.2 No quiz on Wednesday

2.3 Programming Assignment #3

Final submission due Friday

2.4 Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM,
X836

One bonus point for attending and posting a brief summary of the talk from

the CPSC 311 perspective.

Two bonus points for attending and posting a thoughtful, thorough dis-

cussion of the talk.

Three bonus points for being the speaker. :)

2

TypeScript is a programming language whose goal is to support develop-

ment of large JavaScript programs. TypeScript is a superset of the current

JavaScript standard (ECMAScript 5) that adds an optional static type sys-

tem to JavaScript. TypeScript exists only to support high-level thinking

about JavaScript programs; it has no impact on runtime behavior. Because

of this, TypeScript is an example of �types for tooling� vs. the more tra-

ditional idea of �types for runtime safety.� TypeScript has a novel design

for type inference; the goal of the design is to provide maximum conve-

nience (few annotations required) and transparency (chains of inference are

clear and local). The TypeScript compiler, incremental static analysis tools,

and speci�cation are open source (see typescriptlang.org). Several million

lines of TypeScript are part of shipping Microsoft products. Since the com-

munity preview release in October, 2012, several 100K+ line TypeScript

projects have grown up outside of Microsoft and the TypeScript community

has created a site, at github.com, that holds over 100 community-maintained

TypeScript descriptions of popular JavaScript frameworks such as jQuery.

Steve Lucco is a Technical Fellow at Microsoft, where he is responsible for

Microsoft's web development tools and runtimes. He led the development

of Microsoft's Chakra JavaScript engine, which powers Internet Explorer.

Currently, Chakra is 30% faster than Chrome V8 on SunSpider, the most

widely cited JavaScript benchmark. He started the TypeScript team and

contributes to the design and implementation of TypeScript.

3 Environments and Scope (repeated from last
class)

Substitution didn't really capture the typical intuition people have for how

evaluation of identi�ers works. We usually imagine �looking up the value� of

the identi�er in memory or in some sort of data structure.

Let's take a few steps toward that model.

3.1 Scope: Static vs. Dynamic

First, let's �gure out where an identi�er should be available.

The region of a program where an identi�er binding is available is called

the identi�er's scope.

Historically, there's two main kinds of scope. Static scope follows the

static (textual, lexical, or �on the page�) form of the program. Dynamic

scope follows the function call structure of the program.

3

http://typescriptlang.org
https://github.com/borisyankov/DefinitelyTyped

Consider our use-x/define-x example from our function test cases:

(define (use-x y)

x)

(define (define-x x)

(use-x 5))

Under static scoping:

� Where is the binding for y available?

� Where is the binding for x available?

� What happens when we call (define-x 3)?

Under dynamic scoping:

� Where is the binding for y available?

� Where is the binding for x available?

� What happens when we call (define-x 3)?

Here's an even more interesting pair of questions. Be careful, the answers

are not both obvious from what we said above.

� Under static scoping, where does the binding for x come from?

� Under dynamic scoping, where does the binding for x come from?

Which one is better: static or dynamic scoping?

Let's go play around with scope in �le:2013W1-environment-diagrams.rkt.

Does our implementation of subst do the right thing for scoping?

3.2 Environment

Now that we know where identi�er bindings are available, we need a data

structure in which to look up identi�er references. We'll call that data struc-

ture an environment because it de�nes what's �around us� at any given point

as our program runs.

Because we decided on static scoping, there's something nifty about our

environment data structure. We know exactly which identi�ers will be

bound in the environment at every point in our program before our program

even starts running, but we do not know what values they'll be bound to.

Check out the my-map function in �le:2013W1-environment-diagrams (or

below):

4

file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-environment-diagrams.rkt
file://.2013W1-environment-diagrams

� Is there one particular value that the loa inside helper is bound to?

� What about just within a single call to my-map?

So, our environment follows the shape of the boxes in our environment di-

agram:

3.2.1 Why lists for environments?

There are many choices for data structures for environments. Because we

know our environment's shape statically, we can even compile away all our

identi�ers and replace them with direct memory references or indexes into

an array!

To keep things clear and simple, we'll just use lists. Speci�cally: lists of

pairs of identi�ers and their values. They're not the most e�cient solution,

but they're easy to use, understand, and manipulate in Racket.

5

3.2.2 Important Side Note: Assignment vs. Binding

Later our environments will pair identi�ers with their locations in memory�

which we'll call the �store��rather than with their values. That's because of

assignment, which can change the value associated with an identi�er, but

does not bind the variable to a new location.

The takeaway is that assignment is not the same thing as binding. It

doesn't create a new identi�er; it just changes the value associated with an

existing identi�er.

In a less important side note: some languages�particularly many �script-

ing languages� like Python�use a syntactic assignment statement that serves

both the purpose of creating a binding and assigning to an variable's value.

So, in Python, we could say:

def some_function():

y = 2

x = y + 5

return x

4 Environments: Breaking BAD BAD Test Cases

(On an unrelated note, please don't tell me anything from the last season.)

You've already seen environments implemented in the textbook. So,

instead, let's break our test cases!

�le:2013W1-lecture14-environments.rkt has six BAD BAD test cases.

They don't currently pass, but we want to make them pass, even though

they're bad.

Our goal is to break our interpreter in speci�c ways and learn something

about environments from how we break it.

5 What have we learned today?

� From QotD: Dynamic scope really does still get used and really does

cause problems (and, perhaps, provide opportunities).

� Scope (repeated from last time)

� De�ne the terms scope, static scope, and dynamic scope.

� Distinguish between identi�er (or variable) bindings and assign-

ment.

6

file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-lecture14-environments.rkt

� Trace programs using static scope.

� Trace programs using dynamic scope.

� Justify static scope as the better option over dynamic scope for

software engineering reasons.

� Sketch the static scopes of identi�er bindings in a program.

� Environments (repeated from last time)

� De�ne the term environment.

� Distinguish between static scope of identi�ers in environments

and dynamic extent and identity of their values.

* (That is, we know statically which identi�ers will appear

where in our environment�and so could do something far

more e�cient than a list!�but we do not know statically what

particular values our identi�ers will be bound to and, indeed,

those values can �escape� their static context and wind up at

distant points in the program. In fact, they'd better be able

to. . . otherwise, how would functions return result values to

their callers?!)

� Scope and Environment Implementation and Comprehension

� Add and manipulate the environment (bindings) available to a

program.

� Give and analyse concrete examples that illustrate the di�erence

between static and dynamic scope.

� Indicate (some of) the implementation di�erences between static

and dynamic scope.

� Explain why lazy evaluation with environments can easily lead

to the introduction of dynamic scope. (Probably NOT pre-

midterm.)

ORGMODECONFIG

#+DRAWERS: SOLUTION ORGMODECONFIG

#+COMMENT TODO: change to d:nil (or delete) to not export SOLUTION drawers

#+OPTIONS: d:t

7

	Question of the Day
	Logistics
	Midterm #1: Tuesday (tomorrow!) 7PM in CHBE 101
	No quiz on Wednesday
	Programming Assignment #3
	Neat PL research talk upcoming: 24 Oct, 3:30-4:30PM, X836

	Environments and Scope (repeated from last class)
	Scope: Static vs. Dynamic
	Environment
	Why lists for environments?
	Important Side Note: Assignment vs. Binding

	Environments: Breaking BAD BAD Test Cases
	What have we learned today?

