2013W1-lecturel3

October 20, 2013

Contents

[1 Question of the Day|

|2 Finishing those old notes|

3 Environments and Scope|
[3.1 Scope: Static vs. Dynamic|.

[3.2.1 Important Side Note: Assignment vs. Bindingf.
[3.3 Implemented Environments|

[4.1 Programming Assignment #3[.
[4.2 Midterm #1 on Tuesday|
[4.2.1 Check out the pre-posted materials|
4.2.2 Limited (a bit) open notes/open book exam|
[4.2.3 Check out the previous exams|.
4.2.4 No appendix provided for this midterm :(|
4.3 No quiz on Wednesday|

[>"What have we learned today?|

1 Question of the Day

OK, this one isn’t really a question. I admit it!

Why should T care about Programming Languages? The spam botnet
administrator edition: http://www.youtube.com/watch?v=ILOtIMShi9s,
roughly 33:00.

This is also a tremendously fun video of a talk by a grad school friend
of mine on high highly influential research into the black market world of
computing.

2 Finishing those old notes

file:2013W1-lecture?.org

3 Environments and Scope

Substitution didn’t really capture the typical intuition people have for how
evaluation of identifiers works. We usually imagine “looking up the value” of
the identifier in memory or in some sort of data structure.

Let’s take a few steps toward that model.

3.1 Scope: Static vs. Dynamic

First, let’s figure out where an identifier should be available.

The region of a program where an identifier binding is available is called
the identifier’s scope.

Historically, there’s two main kinds of scope. Static scope follows the
static (textual, lexical, or “on the page”) form of the program. Dynamic
scope follows the function call structure of the program.

Consider our use-x/define-x example from our function test cases:

(define (use-x y)

x)

(define (define-x x)
(use-x 5))

Under static scoping:
e Where is the binding for y available?
o Where is the binding for x available?

e What happens when we call (define-x 3)7

http://www.youtube.com/watch?v=ILOtIMShi9s
file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-lecture7.org

Under dynamic scoping;:

e Where is the binding for y available?

e Where is the binding for x available?

e What happens when we call (define-x 3)7

Here’s an even more interesting pair of questions. Be careful, the answers
are not both obvious from what we said above.

e Under static scoping, where does the binding for x come from?
e Under dynamic scoping, where does the binding for x come from?

Which one is better: static or dynamic scoping?
Let’s go play around with scope in file:2013W 1-environment-diagrams.rkt.
Does our implementation of subst do the right thing for scoping?

3.2 Environment

Now that we know where identifier bindings are available, we need a data
structure in which to look up identifier references. We'll call that data struc-
ture an environment because it defines what’s “around us” at any given point
as our program runs.

Because we decided on static scoping, there’s something nifty about our
environment data structure. We know exactly which identifiers will be
bound in the environment at every point in our program before our program
even starts running, but we do not know what values they’ll be bound to.

Check out the my-map function in file:2013W 1-environment-diagrams;

e [s there one particular value that the loa inside helper is bound to?
e What about just within a single call to my-map?

So, our environment follows the shape of the boxes in our environment di-

file://c:/Users/wolf/documents/courses/311-2013W1/web/slides/2013W1-environment-diagrams.rkt
file://.2013W1-environment-diagrams

my-map and abstract-list scopes
(define is special and a hit confusing)

(define (my-map f loa) f loa, and helper scopes

(local [(define (helper loa) (inner)loascope

(if (empty? loa)
empty

(cons (f (first loa))

(helper (rest loa)))))]

(helper loa)))

(define (abstract-1list medium lon) medium and lon scopes

(map (lambda (num) num scope

(cond [(= medium num) 'medium]
[(< medium num) 'smalll]

[else "bigl))

lon))

agram:

There are many choices for data structures for environments. Because
we know our environment’s shape statically, we can even compile away all
our identifiers and replace them with direct memory references or indexes
into an array!

To keep things clear and simple, we’ll just use lists. Specifically: lists of
pairs of identifiers and their values. They’re not the most efficient solution,
but they’re easy to use, understand, and manipulate in Racket.

3.2.1 Important Side Note: Assignment vs. Binding

Later our environments will pair identifiers with their locations in memory—
which we’ll call the “store”—rather than with their values. That’s because of
assignment, which can change the value associated with an identifier, but
does not bind the variable to a new location.

The takeaway is that assignment is not the same thing as binding. It
doesn’t create a new identifier; it just changes the value associated with an

existing identifier.

In aless important side note: some languages—particularly many “script-
ing languages” like Python—use a syntactic assignment statement that serves
both the purpose of creating a binding and assigning to an variable’s value.

So, in Python, we could say:

def some_function():

y=2
x=y+5bH
return x

3.3 Implemented Environments

You’ve already seen environments implemented in the textbook. So, instead,
let’s break our test cases!
We’ll do that next set of notes!

4 Logistics

4.1 Programming Assignment #3

Milestone due today! How are you doing?
Final submission due one week from today.

4.2 Midterm #1 on Tuesday
4.2.1 Check out the pre-posted materials

In the “notes” section of the webpage. This goes beyond (more than the
paper from the class exercise) and the questions from Wednesday’s notes.
Those are not the questions from the exam.. but they’re sure designed to
prepare you for the exam!

4.2.2 Limited (a bit) open notes/open book exam

“Exams will be limited open-book/open-notes: During the exam you may
bring for your own use up to 3 textbooks (of your choice, although we rec-
ommend CS books) and one 3-ring binder of paper or its equivalent (about
3 inches of paper). No calculators, phones, or other electronic equipment is
allowed!”

If you choose to bring fewer than 3 textbooks, you can bring some extra
paper. Say 1-2 inches per textbook.

If you would prefer this was more Canadian, you can limit yourself to
centimeters, but they’re shorter than inches, and who sells a 3-cm 3-ring
binder?!

4.2.3 Check out the previous exams

On Piazza, BUT be aware that these may not make much sense hecause of
changes to the course structure and textbook.

4.2.4 No appendix provided for this midterm :(

There’s been no activity on the wiki.. but feel free to make one for the next
exam and gain bonus points for contributing. See http://wiki.ubc.ca/Course:CPSC311/2013WT1

4.3 No quiz on Wednesday
The midterm will do.

5 What have we learned today?

e From QotD: Yet another place where a little programming language
might come in handy in an unsavory career path that is hopefully not
in your future.

e Scope

— Define the terms scope, static scope, and dynamic scope.

— Distinguish between identifier (or variable) bindings and assign-
ment.

— Trace programs using static scope.
— Trace programs using dynamic scope.

— Justify static scope as the better option over dynamic scope for
software engineering reasons.

— Sketch the static scopes of identifier bindings in a program.
e Environments

— Define the term enwvironment.

— Distinguish between static scope of identifiers in environments
and dynamic extent and identity of their values.

http://wiki.ubc.ca/Course:CPSC311/2013WT1

* (That is, we know statically which identifiers will appear
where in our environment—and so could do something far
more efficient than a list!—but we do not know statically what
particular values our identifiers will be bound to and, indeed,
those values can “escape” their static context and wind up at
distant points in the program. In fact, they’d better be able
to... otherwise, how would functions return result values to
their callers?!)

ORGMODECONFIG

#+DRAWERS: SOLUTION ORGMODECONFIG

#+COMMENT TODO: change to d:nil (or delete) to not export SOLUTION drawers
#+0PTIONS: d:t

	Question of the Day
	Finishing those old notes
	Environments and Scope
	Scope: Static vs. Dynamic
	Environment
	Important Side Note: Assignment vs. Binding

	Implemented Environments

	Logistics
	Programming Assignment #3
	Midterm #1 on Tuesday
	Check out the pre-posted materials
	Limited (a bit) open notes/open book exam
	Check out the previous exams
	No appendix provided for this midterm :(

	No quiz on Wednesday

	What have we learned today?

