
2013W1-lecture1

September 12, 2013

Contents

1 CPSC 311 Introduction 2

1.1 Programming Languages are Magic Languages; Interpreters
are Magic Machines; What's 311? 2

1.2 Aside on Arrays: A Fundamental Programming Construct? . 2
1.2.1 Arrays: All the Same? 3
1.2.2 C Arrays: �Close to the Metal� 3
1.2.3 JavaScript Arrays . 6
1.2.4 C++ Arrays . 11

1.3 How This Course Will Work 15
1.3.1 The �Hello, World! Bonjour, le Monde! . . . � Approach

to PL . 15
1.3.2 The �Build It to Understand It� Approach to PL . . . 15

1.4 Logistics . 16
1.4.1 Assignments: Programming and Conceptual 16
1.4.2 Reading: Do It . 17
1.4.3 Midterm Exams: Timing, Group Exam, and �Op-

tional� Exams . 17
1.4.4 O�ce Hours and Extended O�ce Hours: Your Time . 18
1.4.5 Tutorials: Targeted Exam Prep 18

1.5 What have we learned today? 19

2 References 19

1

1 CPSC 311 Introduction

This is �De�nition of Programming Languages�. I'm Steve Wolfman. Call
me Steve. Find me and say hello!

Meanwhile, what is the most common security vulnerability in programs
as of:

� 2011

� 1995

Not this, but it's relevant:
(Answers: cross-site scripting and bu�er over�ow, respectively.)

1.1 Programming Languages are Magic Languages; Inter-

preters are Magic Machines; What's 311?

Programming is the closest thing to spell-casting we sad real-worlders get.
We write words in arcane tongues; unseen processes cast them for us; and
they change the world.

Programming languages are the arcane tongues. The unseen processes
are compilers and interpreters: programs that take otherwise incomprehen-
sible documents1 and evaluate them.

Our job this term is to study the languages, not compilers/interpreters.
CPSC 411 will study compilers.

But, what does it mean to study the languages? After all, you've already
learned at least two languages.

1.2 Aside on Arrays: A Fundamental Programming Con-

struct?

Let's consider the humble array. You've seen it in Java. It's less important
in Racket but still there (vector).

1With the exception of literate programming.

2

http://docs.racket-lang.org/guide/vectors.html
http://en.wikipedia.org/wiki/Literate_programming

1.2.1 Arrays: All the Same?

In many languages, arrays look about the same. Here's some C code with
arrays:

int array[5];

int i;

for (i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

printf("array length is %d; array[3] = %d\n",

(sizeof(array)/sizeof(array[0])), array[3]);

Here's similar JavaScript code:

var array = new Array(5);

for (var i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

console.log("array length is " + array.length +

"; array[3] = " + array[3])

And here's similar C++ code (using the new C++11 standard):

std::array<int, 5> array;

for (int i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

std::cout << "array length is " << array.size() << "; array[3] = " << array[3];

Despite di�erences in syntax, all three use the same syntax for the inside
of our loop, which isn't a coincidence. All three also allow you to �nd the
array's length, although C's method is onerous!

However, the three constructs we're manipulating in these programs are
wildly di�erent things.

1.2.2 C Arrays: �Close to the Metal�

C gives the programmer easy access to a fairly standard model of machine
architecture (the �metal�). That makes it a language of choice for systems
programmers, which is why you'd learn it in CPSC 213!

So, the semantics�the intended meaning�of arrays in C is fairly prim-
itive.

3

� C Array Indexing: Syntactic Sugar for Juggling Addresses
An int array variable in C can mostly be thought of as an int pointer
variable that happens to point to the start of a block of memory with
enough space for the whole array.

Indeed, a[i] is actually syntactic sugar�surface syntax that's meant
to be simpler (�sweeter�) for the programmer than the underlying ver-
sion. It is desugared�rewritten under the hood�to *(a+i).2 That
underlying syntax means: take the memory location stored in a, add
i to it3, and look up what's at the resulting memory location.

Is this really true? Well, if addition is commutative (i.e., x+y means
the same as y+x), then *(a+i) is the same as *(i+a), and a[i] should
be the same as i[a].

Let's try it:

int array[5];

int i;

for (i = 0; i < 5; i++) {

i[array] = i*i + 1;

}

printf("array length is %d; array[3] = %d\n",

(sizeof(array)/sizeof(0[array])), 3[array]);

Take a moment to think that through.

This semantics (�arrays are just syntactic sugar for pointer arithmetic�)
leads naturally to many other features of C, including its lack of bounds
checking4.

The same code using C++'s templated array type does not work:

std::array<int, 5> array;

for (int i = 0; i < 5; i++) {

i[array] = i*i + 1;

}

std::cout << "array length is " << array.size() << "; array[3] = " << 3[array];

2In C11, E1[E2] is equivalent to (*((E1)+(E2))).
3Actually the addition operator notices that one argument is a pointer and the other

an int and multiplies the int by the size of the type pointed to by the pointer.
4Technically, per the C11 standard, it looks like bounds checking is implementation

dependent. Practically, it's not there throughout the history of C.

4

The same goes for JavaScript.

� C Array Length: Statically Available, Dynamically Absent
What about �nding the array length. In fact, this shouldn't be possi-
ble. Why not?

Consider: An array in C is a variable storing an address. Beginning
at that address in memory is enough space allocated for that array to
hold all of its elements. That's all that's in the variable and all that's
in that block of memory.5

In our example, with my compiler, here's what's stored in the variable
and how much room is available:

int array[5];

printf("array contains: %d\n", (int)array); /* If you drop (int), this

works the same. That's

because printf has no

idea what type its

arguments (after the

first) are! */

printf("the amount of space available is: %d\n",

(int)&array[5] - (int)&array[0]);

Computers cannot magically produce information that they don't
store. How am I getting the length?

ANSWER: From the compiler. As the compiler compiles the code, it
clearly knows that array is an array variable and how many elements
it has, right? In the limited circumstance that the compiler has access
to that information at the point in the code where we want the length
of the array, we can get it.

This won't work for many other examples, like this one:

int length(int argarray[]) {

return sizeof(argarray)/sizeof(argarray[0]);

}

5In practice there might be some tagging information stored by the allocator near the

array block, although not for statically allocated arrays. However, as a C programmer,

what I've described is all you can generally count on.

5

/* Inside main: */

int array[5];

printf("length of array is: %d", length(array));

Why doesn't this work? Well, in order to work, the compiler must
know which array argarray is. Does it know that? Can it know that?

This is our �rst example of the di�erence between static properties of a
program�those associated with the program itself (i.e., the text of the
program)�and dynamic properties�those associated with the running
of the program. argarray could �be� several di�erent arrays during the
run of a program. So, the compiler cannot statically determine which
array it is, much less how long it is! On the other hand, array is only
ever one (shape of) array, and the compiler can determine its length
statically.

Fortunately, both JavaScript and C++11 have objects and standard
arrays we can use. So, their semantics for arrays are probably the
same, right? :)

1.2.3 JavaScript Arrays

Note: This section builds from fascinating examples published in The
Essence of JavaScript by Guha, Saftoiu, and Krishnamurthi.

JavaScript arrays are objects. To a programmer with, say, a Java (object-
oriented programming) background, that's a natural statement. It produces
a mental model akin to: �There's some class specifying functionality for
arrays, and each array object is an instance of that class. The object presents
an abstraction over the typical C-style �xed-length, mutable array.�

� JavaScript Objects: Prototype-Based, Not Class-y; OOP, Not Mono-
lithic
JavaScript doesn't have classes. Inheritance is �prototype-based�.
Roughly speaking, that means that you create an object based on
another object and until-and-unless you override some behaviour in a
child object, it behaves like its parent object.

This leads to some wacky behaviour. Unlike classes, objects can be
altered at runtime (dynamically). Let's start extending our example..

var array = new Array(5);

for (var i = 0; i < 5; i++) {

6

http://cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/paper.pdf
http://cs.brown.edu/~sk/Publications/Papers/Published/gsk-essence-javascript/paper.pdf

array[i] = i*i + 1;

}

// Array behaviour added at runtime! (To all arrays, not just this one.)

Array.prototype.size = function() {

var i = 0;

while (this[i] != undefined) i++;

return i;

}

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

This takes a bit of getting used to, but you can probably imagine why
you might want it. Maybe you design a function for �Book Title Case
on Strings that Respects Whitespace� in Java. Wouldn't it be neat to
just add it to the String type so that you can use it anywhere in your
program on any String?6

Wouldn't it be horrible? Why?

(Think of a new colleague who suddenly runs across String s = "the

deathly hallows".toBookTitleCase() in your codebase. How do
they understand this code? How about a colleague with the same idea
as you who also de�nes toBookTitleCase, but thinks �That� should
be capitalized?)

So, Object-Oriented Programming is not really a monolithic idea un-
derstandable via learning an OOP language. That's why we instead
study the toolkit a language designer uses to build languages.

� JavaScript Array Length: Three Semantic Surprises
But hey, what about that new size function for arrays? It works the
same as the already existing length property. Well, almost.

You can delete elements from an array in JavaScript:

var array = new Array(5);

6Note that even if you could subclass String�which you can't because String is

�nal�it wouldn't be the same thing. That would only a�ect strings of your subclass; we

want all Strings to have a new behaviour.

7

for (var i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

console.log("array length is " + array.length +

"; array[3] = " + array[3])

// Array behaviour added at runtime! (To all arrays, not just this one.)

Array.prototype.size = function() {

var i = 0;

while (this[i] != undefined) i++;

return i;

}

// Let's delete that element. What do /you/ think a programmer should

// /expect/ to happen?

delete array[3]

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

That's odd, but it gets stranger. You can assign to the length prop-
erty:

var array = new Array(5);

for (var i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

// Array behaviour added at runtime! (To all arrays, not just this one.)

Array.prototype.size = function() {

var i = 0;

while (this[i] != undefined) i++;

return i;

}

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

// Let's delete that element. What do /you/ think a programmer should

8

// /expect/ to happen?

delete array[3]

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

// Let's go crazy and /set/ the length to something different. What

// do /you/ think a programmer should /expect/ to happen?

array.length = 8

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[length-1] = " + array[array.length-1])

// Let's go crazier and set the length to something small. What do

// /you/ think a programmer should /expect/ to happen?

array.length = 1

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[4] = " + array[4])

Oh, and out-bounds-assignments in the array?

var array = new Array(5);

for (var i = 0; i < 5; i++) {

array[i] = i*i + 1;

}

// Array behaviour added at runtime! (To all arrays, not just this one.)

Array.prototype.size = function() {

var i = 0;

while (this[i] != undefined) i++;

return i;

}

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

// Let's delete that element. What do /you/ think a programmer should

// /expect/ to happen?

9

delete array[3]

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[3] = " + array[3])

// Let's go crazy and /set/ the length to something different. What

// do /you/ think a programmer should /expect/ to happen?

array.length = 8

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[length-1] = " + array[array.length-1])

// Let's go crazier and set the length to something small. What do

// /you/ think a programmer should /expect/ to happen?

array.length = 1

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[4] = " + array[4])

// Surely, we at least get an out-of-bounds error for assigning beyond the length of the array, right?

array[4] = "hello"

console.log("array length is " + array.length +

"; array.size() is " + array.size() +

"; array[4] = " + array[4])

That's just nuts. And, maybe it is nuts from a �programmer user
interface� perspective.

From a semantic perspective, it �ows from the design of JavaScript
objects�to be �exible at runtime�and of arrays�to truly be objects
under the hood, not something special.

� JavaScript Array Indexing: More Syntactic Sugar
Indeed, arrays are not anything special. array[1] is syntactic sugar

for a �eld access to a �eld named 1, like array.1 (or vice versa).7 So,
of course I can assign to an out-of-bounds element, just as I can add a
new �eld to an object. Once I can do that, of course length needs to
track those changes. And, perhaps, it's not a surprising design decision
to let a length �eld that will already �uctuate be assignable as well.

7You're not allowed to write the array.1 syntax, however.

10

And, that bracket syntactic sugar is by no means limited to arrays:

object = new Object()

object.foo = "bar"

object.bar = "foo"

delete object.bar

object["baz"] = "baz"

object[0] = "yes"

console.log("object's properties: " + Object.getOwnPropertyNames(object))

array = new Array()

array.foo = "bar"

array.bar = "foo"

array["baz"] = "baz"

array[0] = "yes"

array[1] = "no"

array[4] = "stop"

array[5] = "go"

console.log("array's properties: " + Object.getOwnPropertyNames(array))

// But, object still has no length property:

console.log("object's length property has the value: " + object.length)

Arrays in JavaScript initially seem familiar and intuitive to those raised
on C, C++, or Java (or vector in Racket), but several language design
choices made in JavaScript�and made very di�erently from C, C++,
Java, and Racket�lead to an array that is radically di�erent under the
hood, with a real potential to bite the parochial programmer. That's
why instead of studying languages, we study the toolkit a language
designer uses to build languages.

1.2.4 C++ Arrays

Now, what could be weird about C++?

� C++ Array Length: Static or Dynamic?
How about that size function? Is it like JavaScript's? Does it access
a member variable?

Well, no. In fact, C++11's array type is exposes access to C-style
arrays, but with some of the advantages and trappings of C++. Under

11

the hood, it's: a contiguous block of memory long enough to store all
the elements and that's it. Nonetheless, there is a function that to
determine the size of the array.

You tell me: Is the size of the array determined statically or dynami-

cally? How do you know?

Let's �nd out by writing our own length function:

template <size_t N> int length(std::array<int, N> a) {

return N;

}

// Sorry, need to be explicit about the main function in this example.

int main(int argc, char * argv[]) {

std::array<int, 5> array;

std::cout << "length of array is: " << length(array) << std::endl;

// Just for fun, a different array:

std::array<int, 888> array2;

std::cout << "length of array2 is: " << length(array2) << std::endl;

}

� C++ Array Length: �Dispatch� to the Right Function
What happened?! To �nd out, let's compile the code only to assembly.
You'll also want to �demangle� the result with c++filt as well. So,
here's our code:

#include <iostream>

#include <array>

template <size_t N> int length(std::array<int, N> a) {

return N;

}

int main(int argc, char * argv[]) {

std::array<int, 5> array;

std::cout << "length of array is: " << length(array) << std::endl;

// Just for fun, a different array:

std::array<int, 888> array2;

12

std::cout << "length of array2 is: " << length(array2) << std::endl;

}

Here's how we �compile�8 it:

g++ -std=c++0x -S lecture1.cc

c++filt < lecture1.s > lecture1.s.demangled

Here's a few parts of the assembly (those that mention �length�):

...

call int length<5u>(std::array<int, 5u>)

...

call int length<888u>(std::array<int, 888u>)

...

.globl int length<5u>(std::array<int, 5u>)

.def int length<5u>(std::array<int, 5u>); .scl 2; .type 32; .endef

int length<5u>(std::array<int, 5u>):

LFB1164:

pushl %ebp

LCFI11:

movl %esp, %ebp

LCFI12:

movl $5, %eax

popl %ebp

LCFI13:

ret

...

.globl int length<888u>(std::array<int, 888u>)

.def int length<888u>(std::array<int, 888u>); .scl 2; .type 32; .endef

int length<888u>(std::array<int, 888u>):

LFB1167:

pushl %ebp

LCFI14:

movl %esp, %ebp

LCFI15:

movl $888, %eax

8Actually, this really is compiling, whereas usually we compile, link, and assemble all

at once.

13

popl %ebp

LCFI16:

ret

...

At the top are two calls to length. To two separate functions, one for
5 and one for 888. Later, we see the function de�nitions. Can you �nd
where in the de�nitions the code ��gures out� how long the array is?

Hint: the register named eax stores the return value of the function.

How did the compiler know statically what the length of the array
parameter was?

Seems like cheating, doesn't it? :)

This is our �rst discussion of the issue of dispatching�choosing which
version of a function to call. The solution here is the usual one for
C: static dispatch. In C, most of the time, the compiler knows where
the de�nition of a function resides given the name of the function. So,
it replaces the function call with an assembly language instruction to
jump to the implementation of the function.9

Can you guess whether the compiler knows where the function to be
called is located in dynamic dispatch?

A good example of dynamic dispatch is the selection of the appropriate
toString method in Java when we convert a particular object to a
string. The Object class itself implements toString. However, if your
object's class or any of its class's superclasses implements toString,
then that will be called instead of Object's version.

Therefore, without knowing how a function like the following is called,
we cannot know which toString method it will invoke:

String toStringWrapper(Object o) {

return o.toString();

}

We could call this on an Integer, a String, or any other type of object.

9C also lets you �take the address of� a function, which e�ectively yields the memory

address where the code for that function begins. That's a value like any other address,

and suddenly you can sort-of have higher-order functions like map.

14

This type of dynamic dispatch gives us one of the key powers that
enable the OOP style. However, static dispatch tends to be more
e�cient. Sometimes, we can statically determine where some of these
supposedly dynamic calls will go and therefore increase the e�ciency
of a call.10

Jumping up a level, that tension between static and dynamic will be
one of the core themes of the course. What can/should we do statically?
Dynamically? What di�erent dynamic ��ows� are there through a
program? Which �ows should we expose to the programmer, and how?

And one more time: That's why we study the toolkit a language de-
signer uses to build languages, not the languages themselves.

1.3 How This Course Will Work

What we just did is the key learning goal in this course. We looked at
di�erent programming languages and understood deeply how and why they
are similar and di�erent. Understanding this allowed us to write code that
exposes those di�erences and will in the future allow us to use the languages
more e�ectively.

1.3.1 The �Hello, World! Bonjour, le Monde! . . . � Approach to

PL

One typical approach to a programming languages course is to quickly learn
a bunch of languages�often one each from �classes� like object-oriented,
scripting, procedural, functional, etc.�and use the opportunity to compare
and contrast them. However, as our example above shows, this is an ap-
proach fraught with danger. Supposedly similar languages may harbor fun-
damentally di�erent semantics. (After all, C++ and JavaScript are both
object-oriented, right?) Furthermore, it's easy in this approach to focus on
the surface features of the languages rather than the core constructs from
which the languages are built.

1.3.2 The �Build It to Understand It� Approach to PL

Instead, we're going to iteratively build languages. We'll typically de�ne the
semantics of our language in words and by the interpreters we create to run

10The desire for static guarantees about which function will be called for a given function

name is the major reason that String is final in Java; e�ciency is one piece of this, but

security is the major one!

15

them. We'll learn about new elements of programming languages as we add
core constructs (and surface features) to our languages.

Often, a new core construct will require only small changes to the inter-
preter. You may be surprised at how profound an impact tiny changes in our
interpreter can have. We will therefore also try to understand what powers
these constructs give to our programmers and what dangers there may be in
exposing them.

After all, quite a bit of programming language design is in taking power
away from your programmer. Don't believe me? Try to imagine a more
powerful language than assembly!

1.4 Logistics

1.4.1 Assignments: Programming and Conceptual

We'll have two types of assignments in the course: programming assignments
(typically, investigating interpreters for various languages, particularly the
�ParselTongue� language) and conceptual assignments.

� Programming Assignments: Marking, Groups, Demos (?), and Dead-
lines
Programming assignments will be due every 1-2 weeks. All will be
marked partially via automated testing and partially subject to review
by the course sta�.

Your �rst project is posted on the course website under �assignments�.
It's to be completed individually subject to the very liberal collabora-
tion policy described in the syllabus, which you must read!!!

For later programming assignments, we hope to make two changes.
First, pending replacement of a TA we lost to visa issues, we hope to do
some submission review via in-person demos. Second, we plan to allow
and encourage working in pairs for later programming assignments.

Tentatively, we plan to have programming projects due Fridays at
8PM, with any demos scheduled as early as we can manage in the
following week, but let's discuss!

� Conceptual Assignments: �Quizzes� Leading to Assignments; Timing
Conceptual assignments are to be done individually, and for now we
plan to keep it that way. Each conceptual assignment will come in two
pieces.

16

Once a week at the start of class, we'll have a short multiple-choice
quiz. You'll submit one copy of your answers on paper and grade the
other copy yourself immediately.

Anything you miss will be due at the start of class one week later as a
written assignment. In each case, your job will be to explain why the
correct answer is correct and why the answer you chose is incorrect.
(We're willing to entertain explanations of why our answer is wrong
and yours is right. . . but I'd talk to us in o�ce hours before submitting
such an answer!)

Tentatively, we plan to have quizzes on Wednesdays at the start of
class with homeworks due the following Tue at 8PM (via handin), but
let's discuss!

Our goal with this setup is to make best use of both your resources
for learning and ours for assessment. This will give you the chance to
study in advance for the quiz and dramatically cut down the time you
spend on conceptual assignments but to recover if the you have trouble
with the topic. On the �ipside, this means we mark and give feedback
only on questions where you struggled, at least initially.

1.4.2 Reading: Do It

I will assume you've done the reading for lecture (and any associated quiz).
If you haven't, trust me, lecture will be furiously fast and terribly confusing.
See the website for the advance reading for a given day. (And yes, I under-
stand many of you wouldn't have seen the �Read Chapter 1� instructions for
the �rst course, but you should still go back and read it!)

1.4.3 Midterm Exams: Timing, Group Exam, and �Optional� Ex-

ams

Our midterm exams are open-notes, evening exams:

� Midterm #1: Tue, 8 Oct, 1900-2130, location TBD

� Midterm #2: Tue, 5 Nov, 1900-2130, location TBD

There are two problems with this:

1. How can we require you to come to an exam outside scheduled hours
that may con�ict with your hard constraints? Easy: we don't. Your

17

midterm exam mark (independently for each midterm) is the maximum
of the midterm and your �nal exam mark. So, you can just skip the
midterm. Do let us know if you are ill or have a hard con�icting
constraint, however, and we will likely also back-calculate a midterm
mark from your �nal mark via reasonable statistical manipulations.
But, my advice: take the midterm!

2. That's a long time for a midterm exam. Is it really 2.5 hours long? No.
We're going to shoot for 50 minutes. We'll then have a group exam
almost immediately afterward. In a group exam, you'll work with
2-3 other students on the same exam you just took. Your personal
grade will be the maximum of your individual exam mark and (0.75
* individual exam mark + 0.25 * group exam mark). Why? First, I
think group exams are an awesome way to thrash out your ideas about
the exam questions (i.e., really learn!). Second, quite a bit of research
at UBC backs me up :)

1.4.4 O�ce Hours and Extended O�ce Hours: Your Time

O�ce hours are times when your course sta� are available to work with you
on whatever questions you might have. If there's time in a given session, you
can even ask us about career choices, research, or how many kidneys Steve
has. (We reserve the right not to answer personal questions.)

WARNING: just because you ask doesn't mean we'll answer. Our job
is to help you answer your questions, not necessarily to just answer them
outright.

You can �nd a schedule of times and locations for o�ce hours right at
the top of the syllabus. Some hours are still pending.

For the �rst two weeks, we're also holding extended o�ce hours. Again,
those are near the top of the syllabus and again, some are pending.

1.4.5 Tutorials: Targeted Exam Prep

The weekly Tuesday tutorials will be problem-working sessions. What prob-
lems? The TAs and I plan to rough out an exam question each week on the
current material and design a tutorial problem based on it (but not the same
problem!).

In other words: They're direct practice for likely exam questions.
The exams may have other questions, but they will each have at least

two �tutorial� questions.

18

1.5 What have we learned today?

� Desugaring

� De�ne the PL term �desugaring�.

� Recognize desugaring in an example.

� Semantics

� De�ne the PL term �semantics�.

� Distinguish between syntactic and semantic issues in a program-
ming language.

� Illustrate how the semantics of syntactically similar constructs
can di�er.

� Static and Dynamic

� De�ne the PL terms �static� and �dynamic�

� Distinguish between static and dynamic properties of a program,
given information about how information about those properties
is determined (stored and/or computed).

� Given information about whether a program property is static or
dynamic, describe the impact on how it can be determined (stored
and/or computed) and used.

� Dispatching

� De�ne the PL term �dispatching� (with respect to function calls).

2 References

� ECMAScript Language Spec 5.1

� C11 Language Standard

19

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf#page=134
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

	CPSC 311 Introduction
	Programming Languages are Magic Languages; Interpreters are Magic Machines; What's 311?
	Aside on Arrays: A Fundamental Programming Construct?
	Arrays: All the Same?
	C Arrays: ``Close to the Metal''
	JavaScript Arrays
	C++ Arrays

	How This Course Will Work
	The ``Hello, World! Bonjour, le Monde! …'' Approach to PL
	The ``Build It to Understand It'' Approach to PL

	Logistics
	Assignments: Programming and Conceptual
	Reading: Do It
	Midterm Exams: Timing, Group Exam, and ``Optional'' Exams
	Office Hours and Extended Office Hours: Your Time
	Tutorials: Targeted Exam Prep

	What have we learned today?

	References

