Quiz 4 (2013/10/23)

October 22, 2013

Put your name and student ID clearly on the quiz answer sheet and on
a sheet of your own paper. Write “Q1” and “Q2” on your paper. For each
question, write your answer on both sheets in the appropriate place. Hand
in the quiz answer sheet only.

In every case, select the single best answer.

You’'re done with any question you answer correctly on the quiz.

By Tue 8PM, submit corrections. Include your name, student ID, the
quiz number, and your collaboration statement. (Even if you got every-
thing right, please do submit for our records. Just indicate that you
got everything correct.) For each question you got incorrect, write the ques-
tion number and then explain why the correct answer is correct and why the
answer you chose is incorrect.



1 Question 1: Eager Evaluation, Static Scoping

Counsider the following code:

(local [(define x 1)]
(local [(define y (+ x x))]
(local [(define x (+ y y))]
x)))

What will the program evaluate to? (Hint: Under eager evaluation with
static scoping, everything behaves pretty much the way we expect it to. No
surprises!)

A1
B. 2
c. 4

D. It will "diverge": cause an error or run forever.

2 Question 2: Lazy Evaluation, Static Scoping

Consider the following code:

(local [(define x 1)]
(local [(define y (+ x x))]
(local [(define x (+ y y))]
x)))

Under lazy evaluation with static scoping, identifiers bind to expression
closures rather than to values. What will the program evaluate to?

A1
B. 2
C. 4

D. It will "diverge'": cause an error or run forever.



3 Question 3: Lazy Evaluation, Dynamic Scoping
Counsider the following code:

(local [(define x 1)]
(local [(define y (+ x x))]
(local [(define x (+ y y))]
x)))

Under lazy evaluation with dynamic scoping, identifiers bind to expres-
sions but not expression closures. What will the program evaluate to?

A1
B. 2
Cc. 4

D. It will "diverge": cause an error or run forever.

4 Question 4: Closures and Static Scoping

A closure is a data structure representing a function value; closures contain
an environment. How does including an environment in a function value
enable us to support static scoping?

A. It enables us to use lazy evaluation.
B. It enables us to use eager evaluation.
C. It "remembers" the values bound to the function’s parameters.

D. It "remembers" bindings from where the function was defined.



5 Question 5: Implementing Function Definition
with Closures

When we implement function definition (such as the FuncC case of Parsel-

Tongue or lambda in Racket), we create a closure that stores the environ-

ment. Specifically, in our interpreter, we usually store the value of a variable

named env in the closure.
Where does that variable env get its value?

A. From the function call site.
B. From the current call to interp.
C. From the initial call to run.

D. From inside the closure itself.

6 Question 6: Implementing Function Application
with Closures

Once we have closures, we no longer need to insist on a function name as
the first part of a function application. We can have an identifier bound to a
function value (as with double in (double 5)) or any other expression that
evaluates to a function (as with the (lambda (...) ...) partof ((lambda
(lon) (map double lon)) (list 1 2 3))).

Which environment should we use when interpreting the function expres-
sion to get the function value?

A. The environment contained in the closure.
B. The environment stored in the env parameter of interp.

C. The global environment.

o

. The empty environment.



	Question 1: Eager Evaluation, Static Scoping
	Question 2: Lazy Evaluation, Static Scoping
	Question 3: Lazy Evaluation, Dynamic Scoping
	Question 4: Closures and Static Scoping
	Question 5: Implementing Function Definition with Closures
	Question 6: Implementing Function Application with Closures

