
Quiz 2 (2013/09/25)

Put your name and student ID clearly on the quiz answer sheet and on

a sheet of your own paper. Write �Q1�, �Q2�, �Q3�, �Q4�, �Q5�, and �Q6�

on your paper. For each question, write your answer on both sheets in the

appropriate place. Hand in the quiz answer sheet only.

In every case, select the single best answer.

You're done with any question you answer correctly on the quiz.

By Tue 8PM, submit corrections. Include your name, student ID, the

quiz number, and your collaboration statement. (Even if you got every-

thing right, please do submit for our records. Just indicate that you

got everything correct.) For each question you got incorrect, write the ques-

tion number and then explain why the correct answer is correct and why the

answer you chose is incorrect.

1

Running Example for Questions 1�3

Consider the following small interpreter from class (with space included for

you to build on it). We would like to add an absolute value operator to the

language.

(define-type ArithC

;; Here is the new variant to handle absolute values.

[absC (body : ArithC)]

[numC (n : number)]

[plusC (l : ArithC) (r : ArithC)]

[multC (l : ArithC) (r : ArithC)])

(define (interp [ast : ArithC]) : number

(type-case ArithC ast

[absC (body) ...] ;; not yet complete

[numC (n) n]

[plusC (l r) (+ (interp l) (interp r))]

[multC (l r) (* (interp l) (interp r))]))

2

Question 1: Changing an Interpreter

Which of these best completes the absC case of the interpreter?

1. (local [(define b (numC-n body))] (if (< b 0) (* -1 b) b)

2. (local [(define v (interp body))] (if (< v 0) (* -1 v) v)

3. (if (< body 0) (* -1 body) body)

4. (if (< body 0) (multC (numC -1) body) body)

�

Question 2: Interpreting and Parsing

We've decided that the concrete syntax should look like absolute value bars;

so, for example, |3| evaluates to 3, as does |-3|.

The built-in read function will not handle absolute value bars correctly.

We will need a much more complex parser. How must the interpreter

change in response to the need for more complex parsing?

1. Without the parser implementation, there is not enough information

to tell what must change.

2. No part of the interpreter needs to change at all.

3. The current ArithC de�nition must change because the concrete syntax

is no longer s-expressions.

4. interp's type-case needs a case with a template like | ... (interp

body) ... |

�

3

Question 3: Desugaring

Imagine we also had the following abstract syntax, which evaluates the

cond-exp and then: if it's negative evaluates to the value of the then-exp

and otherwise evaluates to the value of the else-exp.

[ifNegC (cond-exp : ArithC) (then-exp : ArithC) (else-exp : ArithC)]

Assuming we build the other parts of the desugarer (e.g., de�ning the full

ArithS surface abstract syntax), which of these best describes how desugar-

ing away absolute values could work?

1. We could desugar (absS <body>) to:

(local [(define b (numC (interp (desugar <body>))))]

(ifNegC b (multC (numC -1) b) b))

2. We could desugar (absS <body>) to:

(local [(define b (desugar <body>))]

(ifNegC b (multC (numC -1) b) b))

3. It could not work because we cannot tell until runtime (dynamically)

whether the cond-exp's value is negative.

4. It could not work because we cannot desugar to a conditional.

�

Question 4: How Interpreters Work

(Starting with this question, we no longer reference the running example.)

Which of these best describes the job of an interpreter?

1. To evaluate an expression to its value

2. To simplify the job of a desugarer

3. To run a program and display its result

4. To transform a program from concrete syntax into abstract syntax

�

4

Question 5: Key Features of Functions

Imagine these two snippets of code are part of a much larger plai-typed

program: (+ 1 2) and (define (foo x) (+ 1 2)). Which of the following

best describes the di�erence between the two expressions?

1. Only the �rst snippet evaluates to a value of type number.

2. Only the second snippet behaves di�erently depending on its argument.

3. Only the �rst snippet will run no matter what else happens in the

program.

4. Only the second snippet can appear in more than one place in the

program.

�

5

Question 6: Formal and Actual Parameters

Which of these best describes what a function de�nition can and cannot

include, with respect to formal and actual parameters.

(Remember all the parts of a function de�nition!)

1. Cannot include appearances of either formal or actual parameters.

2. Can include appearances of formal but not actual parameters.

3. Can include appearances of actual but not formal parameters.

4. Can include appearances of both formal and actual parameters.

�

6

