
Modular (read: better)
Design

Pragmatic Programmer:
Eliminate Effects Between Unrelated Things –
design components that are:
self-contained,
independent,
and have a single, well-defined purpose

2

By the end of this unit, you will be able to:
Critique a UML diagram and provide concrete suggestions
of how to improve the design
Explain the goal of a good modular design and why it is
important
Apply the following design-principles appropriately: high
cohesion, loose coupling, principle of least knowledge,
Liskov substitution principle, information hiding,
open/closed principle.

Learning Goals

3

Bad Design

4

The goal of all software design techniques is to break
a complicated problem into simple pieces.

Software Design –
Modularity

5

Why Modularity?

6

 Minimize Complexity
 Reusability
 Extensibility
 Portability
 Maintainability
 …

Why Modularity?

7

 There is no “right answer” with design
 Applying heuristics/principles can provide insights and

lead to a good design

What is a good modular
Design?

815

Design
Principles

Pragmatic Programmer:
Eliminate Effects Between Unrelated Things –
design components that are:
self-contained,
independent,
and have a single, well-defined purpose

914

 High Cohesion
 Loose Coupling
 Information Hiding
 Open/Closed Principle
 Liskov Substitution Principle
 ….

Principles & Heuristics for modular
Design

1013

Discussion question
• Which of these two designs is better?

public class AddressBook

{

 private LinkedList<Address> theAddresses;
 public void add (Address a)

 {theAddresses.add(a);}
 // ... etc. ...
 }
public class AddressBook extends LinkedList<Address>
{
 // no need to write an add method, we inherit it
}

A:

B:

1116

 Cohesion refers to how closely the functions in a
module are related

 Modules should contain functions that logically
belong together
 Group functions that work on the same data

 Classes should have a single
responsibility.

High Cohesion
http://en.wikipedia.org/wiki/Cohesion_(computer_science)

Cohesion (try to increase)

versus
■ The functionalities

embedded in a class,

accessed through its

methods, have little in

common.

■ Methods carry out many

varied activities, often

using coarsely-grained or

unrelated sets of data.

methods that
serve the given
class tend to be
similar in many
aspects

The Or-Check

• A class description that describes a class in
terms of alternatives is probably not a class,
but a set of classes

Coincidental cohesion (bad)

Coincidental cohesion is when parts of a module are grouped arbitrarily; the only relationship between the parts is that they

have been grouped together (e.g. a “Utilities” class).

Logical cohesion (bad)

Logical cohesion is when parts of a module are grouped because they logically are categorized to do the same thing, even if

they are different by nature (e.g. grouping all mouse and keyboard input handling routines).

Temporal cohesion

Temporal cohesion is when parts of a module are grouped by when they are processed - the parts are processed at a

particular time in program execution (e.g. a function which is called after catching an exception which closes open files,

creates an error log, and notifies the user).

Procedural cohesion

Procedural cohesion is when parts of a module are grouped because they always follow a certain sequence of execution (e.g.

a function which checks file permissions and then opens the file).

Communicational cohesion

Communicational cohesion is when parts of a module are grouped because they operate on the same data (e.g. a module

which operates on the same record of information).

Sequential cohesion (very good)

Sequential cohesion is when parts of a module are grouped because the output from one part is the input to another part like

an assembly line (e.g. a function which reads data from a file and processes the data).

Functional cohesion (best)

Functional cohesion is when parts of a module are grouped because they all contribute to a single well-defined task of the

module (e.g. tokenizing a string of XML).

Different
Types of Cohesion

http://en.wikipedia.org/wiki/Tokenizing

Functional Cohesion
(best!)

• Functionally cohesive objects do
ONE thing only.

• Good because they’re easy to
reuse, and understand

• Warning: functionally cohesive can
proliferate and get very tiny (overly
fine grained, overly numerous)

Find more detail at: http://it.toolbox.com/blogs/enterprise-solutions/design-principles-cohesion-16069

http://it.toolbox.com/blogs/enterprise-solutions/design-principles-cohesion-16069

Sequential Cohesion

• Methods in a class chain together (pipe and
filter style)

• Good because it has good coupling (class is
basically independent) and is easy to
maintain

• Warning: more difficult to reuse because
they usually only make sense in their
original implementation context.

Communicational Cohesion

• All methods perform some filtration on the
same input data.

• Can usually be straightforwardly separated into
functionally cohesive modules

• But still, these are easy to maintain

• May be segmented in terms of external uses
(client modules only need one of the services
of the communicationally cohesive module)

Procedural Cohesion
• A cluster of methods that are called

one after another by an external
class (different from sequential
because the chain isn’t internal - it’s
externally invoked and the order can
change)

• Not as easily maintained

• Not as easily translated to other
implementation contexts (low
reusability)

Temporal Cohesion

• Performs activities related in time (all of
initialization for instance)

• Maintenance is difficult because developers
are sometimes tempted to share code
between these methods, causing tangling
and internal dependencies.

• Client objects might want to invoke part of
the behavior of the class, but can’t isolate it.

Logical Cohesion

• Methods only related because they seem to
“logically” go together (grouping all I/O or
device handling routines)

• These modules are usually hard to reuse in
a different context

• They are hard to maintain because they
often are highly internally tangled.

Coincidental Cohesion

• The worst!!

• Module is just a bucket of methods, with no
higher abstraction, and no generalizable
concept.

• Impossible to maintain, because of internal
tangling and confusion

• Impossible to reuse out of context, because it
is entirely context specific

22

public class EmailMessage {

 …

 public void sendMessage() {…}

 public void setSubject(String subj) {…}

 public void setSender(Sender sender) {…}

 public void login(String user, String passw) {…}

 ….

}

17

High or low cohesion?
remember:
classes should be
“about” one thing

2318

 Coupling assesses how tightly a module is related
to other modules

 Goal is loose coupling:
 modules should depend on as few other modules as possible

 Changes in modules should not impact other
modules; easier to work with them separately

Loose Coupling
http://en.wikipedia.org/wiki/Coupling_(computer_science)

Coupling (try to decrease)

versus

A change in one module usually

forces a ripple effect of changes

in other modules.

Assembly of modules might

require more effort and/or time

due to the increased inter-

module dependency.

A particular module might be

harder to reuse and/or test

because dependent modules

must be included.

Content coupling (high)

Content coupling is when one module modifies or relies on

the internal workings of another module (e.g., accessing

local data of another module). Therefore changing the way

the second module produces data (location, type, timing)

will lead to changing the dependent module.

Common coupling

Common coupling is when two modules share the same

global data (e.g., a global variable). Changing the shared

resource implies changing all the modules using it.

External coupling

External coupling occurs when two modules share an

externally imposed data format, communication protocol, or

device interface.This is basically related to the

communication to external tools and devices.

Control coupling

Control coupling is one module controlling the flow of

another, by passing it information on what to do (e.g.,

passing a what-to-do flag).

Stamp coupling (Data-structured coupling)

Stamp coupling is when modules share a composite data structure and

use only a part of it, possibly a different part (e.g., passing a whole

record to a function that only needs one field of it).

This may lead to changing the way a module reads a record because a

field that the module doesn't need has been modified.

Data coupling

Data coupling is when modules share data through, for example,

parameters. Each datum is an elementary piece, and these are the only

data shared (e.g., passing an integer to a function that computes a

square root).

Message coupling (low)

This is the loosest type of coupling. It can be achieved by state

decentralization (as in objects) and component communication is done

via parameters or message passing

No coupling

Modules do not communicate at all with one another.

Different
Types of Coupling

Data Coupling (really really good!)

• Data is passed by parameters, and all
parameters are used.

• Warning: don’t pass too many data elements
-- if you have a really long list of parameters,
then you may want to rethink partitioning.

Stamp Coupling

• A record is passed, but only some fields are
used.

• It’s a loose form of coupling

• Promotes odd bundles of data

Control Coupling

• Objects influence other’s internal behavior
through calls

• A calls B, with the parameter “fast”. This
means that B chooses a different strategy.

• This requires A to know what B might do
internally which might make changing B
hard later.

External Coupling

• A module has an integral dependency on an
externally imposed format or relies on the a
3rd party device/library/etc.

• Problematic if that 3rd party element changes!

• Solution: Use a wrapper pattern, where all
reliance on the 3rd party is encapsulated. That
way, if the 3rd party s/w changes, you only need
to change the wrapper.

Common Coupling

• Objects rely on the same global data

• This causes tight coupling (the use of global
data by one object is seen by the other)

• May be tough to debug (who changed the
data?!)

• May be tough to upgrade (if I introduce a
new change, will that break everyone else?)

Content Coupling

• Worst kind of coupling!!

• Object refers to another’s internals
(changing internal fields of another object
without going through the getter/setter
interface)

Semantic coupling: The most insidious kind of coupling
occurs when one module makes use not of some syntactic
element of another module but of some semantic knowledge of
another module’s inner workings.
Code Complete 2, Chapter 5, page 102 (pdf on the course webpage)

Semantic coupling is dangerous because changing code in the used module can break
code in the using module in ways that are completely undetectable by the compiler.
When code like this breaks, it breaks in subtle ways that seem unrelated to the change
made in the used module, which turns debugging into a Sisyphean task.

The point of loose coupling is that an effective module provides an additional level of
abstraction—once you write it, you can take it for granted. It reduces overall program
complexity and allows you to focus on one thing at a time. If using a module requires
you to focus on more than one thing at once—knowledge of its internal workings,
modification to global data, uncertain functionality—the abstractive power is lost and
the module’s ability to help manage complexity is reduced or eliminated.

33
from Alverson (UW)

Tightly or loosely coupled?

34 20from Alverson (UW)

Tightly or loosely coupled?

35 21from CodeComplete by Steve McConnell

A good class is a lot like
an iceberg: seven-eights
is under water, and you
can see only the one-
eight that’s above the
surface.

Information Hiding

3622

 Only expose necessary
functions

 Abstraction hides complexity by
emphasizing on essential
characteristics and suppressing
detail

 Caller should not assume
anything about how the interface
is implemented

 Effects of internal changes are
localized

Information Hiding

http://www.fatagnus.com/program-to-an-interface-not-an-implementation/

3724

 Class DentistScheduler has
 A public method automaticallySchedule()

 Private methods:
 whoToScheduleNext()

 whoToGiveBadHour()

 isHourBad()

 To use DentistScheduler, just call
automaticallySchedule()
 Don’t have to know how it’s done internally
 Could use a different scheduling technique: no problem!

Information Hiding: Example

3836

 Assume as little as possible about other
modules

 Restrict method calls to your immediate
friends

“Only talk to your friends”

Law of Demeter
(a.k.a. Principle of Least Knowledge)

3937

 Method M of object O should only call methods of:
 O itself
 M’s parameters
 Any object created in M
 O’s direct component objects

 “Single dot rule”
 “a.b.method(…)” breaks LoD
 “a.method(…)” does not

Law of Demeter for classes

4030

Open/Closed Principle
A class must be closed for internal change

But must be open for extensions

When designing classes, do not plan for brand
new functionality to be added by modifying the
core of the class.
Instead, design your class so that extensions
can be made in a modular way, to provide new
functionality by leveraging the power of the
inheritance facilities of the language, or through
pre-accommodated addition of methods.

41

class Drawing {
 public void drawAllShapes(List<IShape> shapes) {
 for (IShape shape : shapes) {
 if (shape instanceof Square()) {
 drawSquare((Square) shape);
 } else if (shape instanceof Circle) {
 drawCircle((Circle) shape));
 } } }

 private void drawSquare(Square square) {..}
// draw the square…
 private void drawCircle(Circle square) {..}
// draw the circle…
}

Open/Closed Example

class Drawing {
 public void drawAllShapes(List<IShape> shapes) {
 for (IShape shape : shapes) {
 shape.draw(); } } }

interface IShape {
 public void draw();}

class Square implements IShape {
 public void draw() { // draw the square }}

This class assumes
developers will modify the
drawSquare and
drawCircle methods
directly to change their
behaviour. This results in
what looks like unplanned
change!

this class has made
specialising the shape
draw method much more
straightforward (also
indicating that developers
see this potential change
coming!)

42

Liskov Substitution
Principle
Subtype Requirement: Let ϕ(x) be a property

provable about objects x of type T. Then ϕ(y) should
be true for objects y of type S where S is a subtype
of T.

[Barbara Liskov and Jeanette Wing, A Behavioral Notion of Subtyping, ACM
Transactions on Programming Languages and Systems, Vol 16, No 6. November
1994, Pages 1811-1841.]

28

if S is a subtype of T, then objects of type T in a
program may be replaced with objects of type S
without altering any of the desirable properties
of that program

http://en.wikipedia.org/wiki/Liskov_substitution_principle

43

 An object of a
superclass should always
be substitutable by an
object of a subclass

 Subclass has same or weaker preconditions

 Subclass has same or stronger
postconditions

 Derived methods should
not assume more or
deliver less

Liskov Substitution Principle

44

Liskov Substitution Principle

GOOD BAD

45

LSP Example
class Rectangle {

 protected int m_width;

 protected int m_height;

 public void setWidth(int width){

 m_width = width;

 }

 public void setHeight(int height){

 m_height = height;

 }

 public int getWidth(){

 return m_width;

 }

 public int getHeight(){

 return m_height;

 }

 public int getArea(){

 return m_width * m_height;

 }

}

class Square extends Rectangle {

 public void setWidth(int width){

 m_width = width;

 m_height = width;

 }

 public void setHeight(int height){

 m_width = height;

 m_height = height;

 }

}
public static void main (String args[])
{

 // Can come from a factory ...

 Rectangle r = new Square();

 r.setWidth(5);

 r.setHeight(10);

 System.out.println(r.getArea());

}

What's the result of the
output here ?
What's the result of the
output here ?

LETS TEST IT

4630

Fixing violations of LSP
LSP shows that a design can be structurally consistent (A

Square ISA Rectangle)

But behaviourally inconsistent

So, we must verify whether the pre and postconditions in
properties will hold when a subclass is used.

“It is only when derived types are completely substitutable for
their base types that functions which use those base types can
be reused with impunity, and the derived types can be changed
with impunity.”

4741

 Goal of design is to manage complexity by decomposing problem
into simple pieces

 Many principles/heuristics for modular design
 Strong cohesion, loose coupling
 Call only your friends
 Information Hiding

 Hide details, do not assume implementation

 Open/Closed Principle
 Open for extension, closed for modification

 Liskov Substitution Principle
 Subclass should be able to replace superclass

Modular Design Summary

	Modular (read: better) Design
	Learning Goals
	Bad Design
	Software Design – Modularity
	Why Modularity?
	Why Modularity?
	What is a good modular Design?
	Slide 8
	Principles & Heuristics for modular Design
	Discussion question
	High Cohesion
	Cohesion (try to increase)
	The Or-Check
	Types of Cohesion
	Functional Cohesion (best!)
	Sequential Cohesion
	Communicational Cohesion
	Procedural Cohesion
	Temporal Cohesion
	Logical Cohesion
	Coincidental Cohesion
	High or low cohesion?
	Loose Coupling
	Coupling (try to decrease)
	Types of Coupling
	Data Coupling (really really good!)
	Stamp Coupling
	Control Coupling
	External Coupling
	Common Coupling
	Content Coupling
	Slide 32
	Tightly or loosely coupled?
	Tightly or loosely coupled?
	Information Hiding
	Information Hiding
	Information Hiding: Example
	Law of Demeter (a.k.a. Principle of Least Knowledge)
	Law of Demeter for classes
	Liskov Substitution Principle
	Liskov Substitution Principle
	Slide 44
	Slide 45
	Fixing violations of LSP
	Modular Design Summary

