
Exercise 1 - Association

● How would you implement in Java these two
simple examples of a normal association and a
composition (I will go around picking some of your
work)

Car Wheel
4

wheelscar

1

University

+name: String

Student

+id: String*

studentsuniversity

1

2

A possible solution for association
public class University {

 private String name;

 private List<Student> students;

 public University(String name) {

 this.name = name;

 this.students = new ArrayList<Student>();

 }

 public void addStudent(Student newStudent){

 if(!students.contains(newStudent)){

 students.add(newStudent);

 newStudent.setUniversity(this);

 }

 }

}

public class Student {

 private String id;

 private University university;

 public Student(String id) {

 this.id = id;

 }

 public void setUniversity(University uni){

 this.university = uni;

 }

}

3

A possible solution for composition
public class Car {

 private List<Wheel> wheels;

 public Car() {

 this.wheels = new ArrayList<Wheel>(4);

 for (int i = 0; i < wheels.size(); i++) {

 this.wheels.add(i, new Wheel(this));

 }

 }

}

public class Wheel {

 private Car car;

 Public Wheel(Car car) {

 this.car = car;

 }

}

4

Exercise 2 – Bank System

Design a UML class diagram that could
represent this system:

A bank system contains data on customers (identified by name and
address) and their accounts.

Each account has a balance and there are 3 type of accounts:
checking for daily operations, saving which offers an interest rate and
investments used to buy stocks. Stocks (identified by a ref) are
bought at a certain quantity for a certain price (ticker).

5

Basic Design Approach

• What are the smaller elements
(classes) in the system?

• What do those elements
basically do?

• How are they hierarchically
organised (inheritance)

• How are they associated with
one another?

• How do they fit into the
architecture (maybe each
architectural component is a
package?)

Naive heuristic for achieving a
design. Usually done on
requirements (eg. user story)

1. find classes by looking for
nouns

2. find methods by looking for
verbs

3. find fields by looking at
attributes of nouns

4. derive associations and
specialisation relationships
between classes

6

Exercise 2 – Bank System

Design a UML class diagram that could
represent this system:

A bank system contains data on customers (identified by name and
address) and their accounts.

Each account has a balance and there are 3 type of accounts:
checking for daily operations, saving which offers an interest rate and
investments used to buy stocks. Stocks (identified by a ref) are
bought at a certain quantity for a certain price (ticker).

7

Exercise 2 – Feedback

● Reminder: an inheritance arrow start from the subclass (child) toward the base
class (parent)

8

Best practice #1: Use Associations for
Classes and Attributes for primitive data
types (String,Int,etc.)

In addition here the stocks attribute and
the association between Investment and
Stock are expressing pretty much the
same thing: investment accounts have a
list of stocks. Take a look back at how an
association can be implemented in Java,
most of the time if the cardinality is
greater than 1 then it becomes a list.

Clarification: here the cardinality of the
association just says that a customer
can have between 0 and 3 accounts but
nothing on the type of account. Hence
this doesn't express that a customer can
have only 1 daily, 1 investment and 1
saving account for example

9

In this design solution the association is
not on the base class (Account) but on
the subclasses (Checking, Savings,
Investment).

Pros: you have a more precise model,
you can say for each type of accounts,
how many are allowed
Cons: it's less readable and heavier

Clarification: the fact of using 3
associations on the model doesn't
mean that the implementation would
need 3 lists (one for Checking, one for
Savings, one for Investment). This
model could be implement with only
one list containing Accounts and the
methods in charge of adding and
removing accounts would check that
the cardinality expressed in the model
are respected

See slide 8, BP1

10

See slide 8, BP1

See slide 8, BP1

In the bank system example, inheritance comes handy since we have common behaviors and attributes
for Accounts that we want to reuse in several types of accounts. Here to take advantage of the inheritance
mechanism common attributes (balance, transactions) and related methods need to be declared in the
parent class Account.

	Slide 1
	Slide 2
	Slide 3
	Exercise
	Stage 2: Detailed Design
	Slide 6
	Slide 7
	Slide 9
	Slide 10

