CPSC 310
Requirements

Elicitation, Analysis, Specification and Validation

2014-09-09

Learning goals

By the end of this unit, you will be able to:
Explain why it’s important to elicit and specify requirements well
Specify or critique a set of requirements (e.g., user stories) for a project

Explain advantages and disadvantages of using specific requirement elicitation
techniques

Given a project description, recommend elicitation techniques and stakeholders
involved

Given a particular system, create comprehensive user stories

Describe challenges when eliciting and specifying requirements

Who am | and what did you
do with Dr. Palyart?

Professor of Computer Science and
Associate Dean (Research &
Graduate Studies) in Faculty of
Science @ UBC

co-founder and currently Chief
Scientist at Tasktop Technologies
Incorporated

work experience as software
developer in telecommunications

love to swim, skate ski and read and
hang out with the family

Marc had a prior commitment this
week so you are stuck with my all of
this week

Tasktep

MPR Teltech was our version of Bell Northern Labs that he
telecommunications hub. BC Tel broke it up in the early 90’s and sold it
foresight in telecommunications history. Newbridge scooped up a very \
chump change and a California semiconductor company called Sierra,
Voila, PMC-Sierra emerged, still one of the top companies locally. At
Abatis Systems (bought by Redback for US$680 million in 2000) and
started Octiga Bay systems that sold to Cray Computers in 2005. Tha
number three in a stealth start-up today.

Exercise

break into groups of 4-6

imagine that you are working at a
software development company
that is about to build a software
system to operate an elevator in the
new Vancouver House development

in the next 15 min, discuss and
write down what the system will
need to do

write it down however you want - |
will be walking around and taking
some pictures of what you are
doing

A total
WOrk of art

being pulled ba the world 10 Vancouver and Vancouver 10

(L B]
h & T RS £

DT
JFodadaien ¥

7

A Ay S

Examples of what you
oroduced...

Requirements

e you were just involved in determining requirements
« about the “what” not the “how” (which is design)

e it is not always clear where the “what” ends and the “how”
begins!

e requirements are used to
« understand what is required of the software
« communicate this understanding to all development parties

e control production to ensure the system meets the requirements
(sometimes requirements are referred to as the specification)

But why do we need
requirements”

 Business needs

e cost estimation
* budgeting

e scheduling requests

 Technical needs

« software design

« software testing

e Communication needs

» documentation and training manuals

Requirements activities

e Elicitation
* Analysis
* Specification

e \alidation

Elicitation

Elicitation: what is it”

e glicitation is sometimes called requirements
gathering

* elicitation is about collecting the requirements from
stakeholders

* who were the stakeholders in the elevator system
for Vancouver House?

* <you should take notes here... :) >

10

ATM

Flicitation: 24 HOUR BANKING
stakeholder
example

who are the stakeholders if
you are going to build the
software for an ATM?

<you should take notes
again!>

11

Elicitation: challenges

* what challenges do you see in performing
requirements elicitation”

e <another place for you to take notes...>

12

Elicitation: techniques

Questionnaires
Interviews

Brainstorm

Focus group

Mock-ups & prototyping
Ethnographic analysis

Documentation study

which technigues are useful
if a similar system already exists
(e.q., elevator system?)

which technigues are useful
if this is the first ever system?

13

Elicitation: techniques

- Questionnaires

- Interviews

Brainstorm
Focus group

Mock-ups & prototyping

- Ethnographic analysis

Documentation study

14

Let's look at a few of
the techniques in more
depth

Elicitation: questionnaires

* good

 for large groups

* when using a specific and fixed list of questions
* not good as the only elicitation technigue because

* Oone-way communication

 time-lag (cannot adjust answers)

 selection bias (only people who feel strongly answer the questionnaire)
e what might be in one?

* ask whether current features used, prioritize current features, etc.

e ask what features not used and why

15

Elicitation:
ethnographic analysis

e analyst immerses in work environment and observes

* why not ask the workers to explain what they are
doing in the environment?

* why might you find out more than through other
approaches?

16

Elicitation: ethnographic
analysis example

* When designing a new air traffic control system,
observation of how the air traffic workers worked found:

e controllers often put aircraft on potentially conflicting
flight paths with intention to correct later

* existing system raised an audible warning when
contlict possible

e controllers turned the buzzer off because they were
annoyed by the constant “spurious” warnings

17

Elicitation: ethnographic
analysis: pros and cons
e Pros:
e <can you list one pro?>
e Cons:
e can be time-consuming
e people might work differently when being watched

e may miss events that only occur rarely

difficult to understand everything that people do from just
watching them

18

Elicitation: interviews

pick the right people who represent a range of
stakeholders

remember users are experts in their domain not Iin
software engineering, it is your job to translate

interview in person (or high-bandwidth video call)

19

Elicitation: interviews,
kKinds of questions

« context-free questions
» about the project, the environment, the user

* e.g., how is success measured? who is the user? what problems do you
encounter in your work?

e open-ended questions

» encourage a full and meaningful answer that uses the interviewee’s own
knowledge

e closed questions
* have a short answer (e.g., yes/no)

» good for confirming a specific idea

20

Elicitation: interviews,
need a plan

* have a template
* |ist of context-free questions
e afew high-level open questions
e a clear idea of what you want to know

e ask the general questions first then the specitic
questions later (why is this approach a good idea?)

e ask clear questions

21

Elicitation:
INnterview template

Establish customer and user profile

* name, responsibility, individual measure of success, elements that go against
success

Assess the problem

* identify problems without good solutions, causes of problem, current solution,
desired solution

Understand the user environment
e user background, education, computer literacy
Recap for understanding

» repeat the problem in your own words, ask for feedback, clarifications,
additions

22

Elicitation:
INterviews exercise

« Mom calls up complaining about having too many
recipe cards, can't find recipes, can’t plan shopping...

e She’s paying your room & board and tuition for
University so ... you agree to make her an app

e Form a group of 4-6
* Who would you interview?

* What questions would you ask?

23

Elicitation:
INnterviews pros and cons

* Pros:
e possible to ask clarification or follow-up questions
* rich collection of information (opinions, feelings, goals, hard facts, etc.)
e Cons:
* interviewing is a difficult skill to master
* can be time-consuming
« difficult for people to self-report
* mis-remember details
» forget or don't realize implicit details

* misunderstandings due to lack of domain knowledge

24

Elicitation:
when does it end?

When all requirements are elicited?

When a large portion of them are elicited?

The “Undiscovered Ruin” problem

e Try asking an archaeologist: “How many undiscovered ruins are
there”?”

Scope the problem to solve, find some ruins, have the stakeholder
buy into the requirements

25

Remember:
requirements activities

e Elicitation

* Analysis

* Specification

e \alidation

Analysis

Analysis

* Analyze the results of elicitation
e are the answers consistent?
 dentify trouble spots?
* identify boundaries?
* identify most important requirements?
e possibly iterate over elicitation again

e could need to have stakeholders negotiate

28

Remember:
Requirements activities

e Elicitation

* Analysis

* Specification

e \alidation

Specification

Specification
e There is no one standard or method for specifying (i.e., writing
down) requirements

» Different specification methods have different levels of formality

* the more formal, the more one can precisely state requirements
and then verify the implemented system meets the requirements

« the more formal, the more one might be able to analyze the
requirements for consistency, etc.

« the more formal, typically the more time, not all projects want to
spend a lot of time and effort in writing requirements precisely

« particularly if requirements will change often

31

Specification: one standard for a
requirements document

The IEEE standard for requirements documents

The most widely known requirements document standard is IEEE/ANSI 830-1998 (IEEE, 1998).
This |IEEE standard suggests the following structure for requirements documents:

1. Introduction

1.1 Purpose of the requirements document

1.2 Scope of the product

1.3 Definitions, acronyms and abbreviations
1.4 References

1.5 Overview of the remainder of the document

2. General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

; 3.Specific requirements, covering functional, non-functional and interface requirements. This is
Sectlon 3 obviously the most substantial part of the document but because of the wide variability in
. organisational practice, it is not appropriate to define a standard structure for this section. The
can be in requirements may document external interfaces, describe system functionality and performance,

d . ff and specify logical database requirements, design constraints, emergent system properties and
ITerent quality characteristics.

forms 4.Appendices

5.Index

Although the IEEE standard is not ideal, it contains a great deal of good advice on how to write
requirements and how to avoid problems. It is too general to be an organisational standard in its
own right. It is a general framework that can be tailored and adapted to define a standard geared
to the needs of a particular organisation.

32

Specification:
specifying functional requirements

we will look at how to use “use cases” for specifying functional
requirements

* ause caseis
* a description of the possible sequences of interactions
between a system and its external actors related to a
particular goal
* many use cases for an entire system

» does not constitute the entire specification

 just part of the SRS (see slide before)

33

Specification:
use case formats

* prief use case

e afew sentences summarizing the use case
e casual use case

e One or two paragraphs of text, informal
 fully-dressed use case

e aformal document on a detailed template

e the most common meaning

34

Specification:
casual use case example

Use Case 1: Buy something

The Requestor initiates a request and sends it to her or his Approver. The Approver checks
that there 1s money in the budget. check the price of the goods. completes the request for
submission. and sends it to the Buyer. The Buyer checks the contents of storage. finding best
vendor for goods. Authorizer: validate approver's signature . Buyer: complete request for ordering,
initiate PO with Vendor. Vendor: deliver goods to Receiving, get receipt for delivery (out of scope
of system under design). Receiver: register delivery, send goods to Requestor. Requestor: mark
request delivered..

At any time prior to receiving goods. Requestor can change or cancel the request. Canceling it
removes it from any active processing. (delete from system?) Reducing the price leaves it intact
in process. Raising the price sends it back to Approver.

Cockburn, A. Writing Effective Use Cases. Addison-Wesley.

35

Specification:
fully-dressed use case (1

Use Case 1: Buy something

Context of use: Requestor buys something through the system. gets it.

Scope: Corporate - The overall purchasing mechanism, electronic and non-electronic, as seen
by the people in the company.

Level: Summary

Preconditions: none

Success End Condition: Requestor has goods. correct budget ready to be debited.

Failed End Protection: Either order not sent or goods not being billed for.

Primary Actor: Requestor

Trigger: Requestor decides to buy something.

Main Success Scenario

1. Requestor: initiate a request

2. Approver: check money in the budget, check price of goods. complete request for
submission

3. Buyer: check contents of storage. find best vendor for goods

4. Authorizer: validate approver's signature

5. Buyer: complete request for ordering, initiate PO with Vendor

36

6. Vendor: deliver goods to Receiving, get receipt for delivery (out of scope of system under
design)

7. Receiver: register delivery. send goods to Requestor

8. Requestor: mark request delivered.

Extensions
la. Requestor does not know vendor or price: leave those parts blank and continue.
1b. At any time prior to receiving goods, Requestor can change or cancel the request.
Canceling it removes it from any active processing. (delete from system?)
Reducing price leaves it intact in process.
Raising price sends it back to Approver.
2a. Approver does not know vendor or price: leave blank and let Buyer fill in or call back.
2b. Approver 1s not Requestor's manager: still ok. as long as approver signs
2¢. Approver declines: send back to Requestor for change or deletion
3a. Buyer finds goods in storage: send those up. reduce request by that amount and carry on.
3b. Buyer fills in Vendor and price, which were missing: gets resent to Approver.
4a. Authorizer declines Approver: send back to Requestor and remove from active processing.
5a. Request involves multiple Vendors: Buyer generates multiple POs.
5b. Buyer merges multiple requests: same process. but mark PO with the requests being
merged.
6a. Vendor does not deliver on time: System does alert of non-delivery
7a. Partial delivery: Receiver marks partial delivery on PO and continues
7b. Partial delivery of multiple-request PO: Receiver assigns quantities to requests and
continues.
8a. Goods are incorrect or improper quality: Requestor does refuse delivered goods. (what
does this mean?)
8b. Requestor has quit the company: Buyer checks with Requestor's manager, either reassign
Requestor, or return goods and cancel request.

37

Deferred Variations
none

Project Information
Priority Release Due Response time Freq of use
Various Several Various 3/day

Calling Use Case: none
Subordinate Use Cases: see text
Channel to primary actor: Internet browser, mail system, or equivalent
Secondary Actors: Vendor
Channels to Secondary Actors: tax, phone, car
Open issues
When i1s a canceled request deleted from the system?
What authorization 1s needed to cancel a request?
Who can alter a request's contents?
What change history must be maintained on requests?
What happens when Requestor refuses delivered goods?

38

Specification:
another use case example

http://epf.eclipse.org/wikis/openup/
core.tech.common.extend_supp/guidances/examples/
use_case_spec_CD5DD9B1.html

39

Specification:
use case diagrams (aside

Order Processing System

X

Manager

wactory
Accountin;

«uses»
~

40

Specification:
use case diagrams (aside)

use case diagrams show packaging and decomposition of use cases not
their content

each ellipse is a use case
e only top-level services should be shown
e not their internal behaviour
actors can be other systems
the system (black outline) can be an actor in other use case diagrams
are not enough by themselves

e must individually document use cases

41

Specification:
user story

a user story is a short description of something your customer will do when they
use your software focused on the value or result they will receive from doing this
thing

used a lot in agile development

~3 sentence description of what a software feature should do

written in the customer’s language

should only provide enough detail to make a low-risk time estimate (a few days)
Role-Goal-Benefit form:

 “As a <ROLE>, | want to <GOAL> in order to <BENEFIT>"

» As a student, | need to login to Piazza to finish the assignment

42

Specification:
user story examples

e good (brief) examples:
e As a user, | want to search for contacts so | can message them.
* As a customer, | want to search for product items, so | can buy them.

 As an employer, | want to post a job on the website so people can
apply for it.

 NOT user stories:
* implement contact list view ContactListView.java
« define the product table database schema

e automate the job posting algorithm

43

Specification:
user story exercise #1

e |et’'s get the basic idea of use stories...
e inagroup of 2...
e write 2-4 user stories for Amazon
e you should be writing 2-3 brief sentences in the form

of “As a <ROLE>, | want to <GOAL> in order to
<BENEFIT>"

e Warning: | will be calling on some pairs to share...

44

Specification:
characteristics of good use stories

e good use cases follow INVEST:

Independent

Negotiable

Valuable to users or customers
Estimable

Small

Testable

Specification:
310 user story format (for now)

for the user stories you will create for your
assignment next week, you will follow a format
that...

e has 2-3 sentences of description

e a number of tests that determine if the use case
IS satisfied

46

Specification:
310 format example #1

 As a company, | can use my credit card so | can pay for job
postings

* Notes: Accepts Visa, MasterCard, Amex. Consider: Discover

Test with Visa, MasterCard and Amex

Test with Diner’s Club

Test with good, bad, and missing card ID numbers

Test with expired cards

Test with over $100 and under $100

47

Specification:
310 format example #2

* As a Creator, | want to upload a video from my local machine so that any user can view it.

* Note: ...

* Test:

Click the “upload” button

Specify a video file to upload
* Check that .flv, .mov. ... extensions are supported
* Check that files larger than 100MB results in an error

* Check that movies longer than 10 min result in an error

Click “upload video” button

Check that progress is displayed in real time.

48

Specification:
user story exercise #2

e |et’s extend our basic idea of use cases...
e inagroup of 2...

e take your 2-4 user stories for Amazon from exercise #1
(or use the ones | provide)

e add any notes

e add tests

e \Warning: | will be calling on some pairs to share...

49

Specification:
user stories in agile development

e |f the user story is a product backlog item also
iInclude

e specifies acceptance or completion criteria that
defines what is meant for this feature to be DONE

e provide estimate of the required effort (story
points)

e exercise on your own: take your Amazon user stories
and try to prioritize them and add an eftort estimate

50

Specification:
what makes a good use story?

Independent

| you are responsible
Negotiable for this material. Please
read it and ask
questions in the next
lecture. (The
material should be
straightforward)

Valuable to Users or Purchasers

Estimable

Small

Testable

51

Specification:
iINndependent user stories

* |ittle dependence between stories

* keeps development tlexible

e makes estimation easier

Specification:
negotiable user stories

* detalls are negotiated between developers and
users

e stories become reminders of what has been
negotiated (especially tests)

53

Specification:
valuable to purchasers or users

e Customer:

 Purchaser: person who pays for the software

e User: person who uses the software
 Make sure customer can estimate value of a story
* Not intended to be valuable only to developers

* The backend database will be MySQL (no value to
user, just restricts your options)

54

Specification:
estimable

e a developer should be able to estimate how long a
story should take to complete

* helps in planning
e problems:
* |ack of domain knowledge -> ask customer
* |ack of technical knowledge -> brush up on tech

e story is too big -> break it up

55

Specification:
small

stories should be “just the right size”
rule-of-thumb: half a day to several days to implement
too big:
e estimate inaccurate + no value delivered until story is complete
e compound suggests break it up
too small:
« writing down the story may take longer than implementing it!

e combine if too small

56

Specification:
testable

* the story should have a test that goes with it to
demonstrate that the story is implementead

e two types
e automated (e.g., JUnit test)

 manual (e.g., an untrained user should be able to
complete the steps in less two minutes)

57

Remember:
Requirements activities

e Elicitation

* Analysis

* Specification

e \alidation

Valigation

Validation (for an SRS)

« A good requirement specification (SRS) must be
» Correct
« Complete
« Unambiguous
« Consistent
« Ranked for importance and stability
* Modifiable

e Jraceable

Lauesen, S. Software Requirements, Addison-Wesley, 2002

60

Validation:
iINnspection

e Most common errors:

Omission: A requirement is missing

Inconsistency: Conflicting requirements

Incorrect facts

Ambiguity
* |nspection is the primary way to validate SRS

« Should include various stakeholders (e.g., SRS author, client,
designer, end-user, etc.)

61

Validation:
checklist

. Do requirements exhibit a clear distinction between function and data?

. Do requirements define all the information to be displayed to the users?

. Do requirements address system and user responses to error conditions?
. Is each requirement stated clearly, concisely and unambiguously?

. Is each requirement testable?

. Are there ambiguous or implied requirements?

. Are there conflicting requirements?

. Are there areas not addressed in the SRS that need to be?

. Are performance requirements stated?

62

Story name

Eery » US9: Credit card payments ?)
General
ID:NYS9

Tags Choose Tags
Value statement w
As h th bsite, . . .
| want the abilty o pay with a credit card, What is required for the business and
So that | may immediately confirm my purchase. prod UCt owner tO accept the StOry
Acceptance Criteria:

® Accept Discover, Visa, MC
® Validate CC# when entered

® \alidate billi dd . .
. Geln:r:te IstlJr::?::ss ﬁ\sdsfailure messages after processing What is reqU|red by the team
- (quality/standards) before sending
Attach details Definition of Done: out for review. Does not change from
and documents e Passes all regression tests / one story to another. Mature teams
Wh en necessary ® Passes testing per acceptance criteria items . '
® Approved by Ul Team may post this on the wall of the team
® Able to show feature in company demo . . s
working area instead of within each
Attachments® Browse... Story
mock®p.png —
Description: Mockup of entry form
Owner: | Greg x| Size (effort) estimate, in relative
Schedule points
lteration: Unscheduled ~|
Plan Est. 8.0 Points Task Est: 0.0 Hours
To Do: 0.0 Hours
Save & Close Save & New Save Cancel

https://help.rallydev.com/writing-great-user-stor

63

Requirements Activity

(you need to hand in your work at end of class
with names/ids on it)

1. Form large groups (6-8)

2. I'll give you a sample system name and
description.

3. Construct 3-6 simple user stories (no test info
needed) to indicate the functionality you expect
from the software you would build.

e “As a <ROLE>, | want to <GOAL> in order to
<BENEFIT>"

65

4. Send one person from your group to a group with a
different #. DO NOT BRING YOUR USER
STORIES WITH YOU!

5. The visitor is now a user and the group the visitor
joined is now the development team. Using
the interview techniques we've discussed, the
development team needs to interview the user.
Write 3-6 user stories about what you learn.

DO NOT ASK THE USER DIRECTLY FOR THEIR
USER STORIES!

6. Give the user their stories and send them back to
their group. Discuss what comes back to your group.

7. Hand in the name of the system you first wrote user stories for,

a name for the user stories that you wrote when the user visited you
and all the names/ids of your group on a sheet and hand it in at the front.

66

