
CPSC 310 
Requirements

Elicitation, Analysis, Specification and Validation

2014-09-09
1

Learning goals
By the end of this unit, you will be able to:  

Explain why it’s important to elicit and specify requirements well  

Specify or critique a set of requirements (e.g., user stories) for a project 

Explain advantages and disadvantages of using specific requirement elicitation
techniques 

Given a project description, recommend elicitation techniques and stakeholders
involved  

Given a particular system, create comprehensive user stories 

Describe challenges when eliciting and specifying requirements

2

Who am I and what did you
do with Dr. Palyart?

• Professor of Computer Science and
Associate Dean (Research &
Graduate Studies) in Faculty of
Science @ UBC

• co-founder and currently Chief
Scientist at Tasktop Technologies
Incorporated

• work experience as software
developer in telecommunications

• love to swim, skate ski and read and
hang out with the family

• Marc had a prior commitment this
week so you are stuck with my all of
this week

3

Exercise
• break into groups of 4-6

• imagine that you are working at a
software development company
that is about to build a software
system to operate an elevator in the
new Vancouver House development

• in the next 15 min, discuss and
write down what the system will
need to do

• write it down however you want - I
will be walking around and taking
some pictures of what you are
doing

4

Examples of what you
produced...

5

Requirements
• you were just involved in determining requirements

• about the “what” not the “how” (which is design)

• it is not always clear where the “what” ends and the “how”
begins!

• requirements are used to

• understand what is required of the software

• communicate this understanding to all development parties

• control production to ensure the system meets the requirements
(sometimes requirements are referred to as the specification)

6

But why do we need
requirements?

• Business needs

• cost estimation

• budgeting

• scheduling requests

• Technical needs

• software design

• software testing

• Communication needs

• documentation and training manuals

7

Requirements activities
• Elicitation

• Analysis

• Specification

• Validation

8

Elicitation

9

Elicitation: what is it?
• elicitation is sometimes called requirements

gathering

• elicitation is about collecting the requirements from
stakeholders

• who were the stakeholders in the elevator system
for Vancouver House?

• <you should take notes here… :) >

10

Elicitation: 
stakeholder

example
who are the stakeholders if
you are going to build the

software for an ATM?  
 

<you should take notes
again!>

11

Elicitation: challenges
• what challenges do you see in performing

requirements elicitation?

• <another place for you to take notes…>

12

Elicitation: techniques
• Questionnaires

• Interviews

• Brainstorm

• Focus group

• Mock-ups & prototyping

• Ethnographic analysis

• Documentation study

• …

which techniques are useful
if a similar system already exists 

(e.g., elevator system?)
"

which techniques are useful
if this is the first ever system?

13

Elicitation: techniques
• Questionnaires!

• Interviews!

• Brainstorm

• Focus group

• Mock-ups & prototyping

• Ethnographic analysis!

• Documentation study

• …

Let’s look at a few of
the techniques in more

depth

14

Elicitation: questionnaires
• good

• for large groups

• when using a specific and fixed list of questions

• not good as the only elicitation technique because

• one-way communication

• time-lag (cannot adjust answers)

• selection bias (only people who feel strongly answer the questionnaire)

• what might be in one?

• ask whether current features used, prioritize current features, etc.

• ask what features not used and why

15

Elicitation:  
ethnographic analysis

• analyst immerses in work environment and observes

• why not ask the workers to explain what they are
doing in the environment? 
 

• why might you find out more than through other
approaches?  
 

16

Elicitation: ethnographic
analysis example

• When designing a new air traffic control system,
observation of how the air traffic workers worked found:

• controllers often put aircraft on potentially conflicting
flight paths with intention to correct later

• existing system raised an audible warning when
conflict possible

• controllers turned the buzzer off because they were
annoyed by the constant “spurious” warnings

17

Elicitation: ethnographic
analysis: pros and cons

• Pros:

• <can you list one pro?>

• Cons:

• can be time-consuming

• people might work differently when being watched

• may miss events that only occur rarely

• difficult to understand everything that people do from just
watching them

18

Elicitation: interviews
• pick the right people who represent a range of

stakeholders

• remember users are experts in their domain not in
software engineering, it is your job to translate

• interview in person (or high-bandwidth video call)

19

Elicitation: interviews,  
kinds of questions

• context-free questions

• about the project, the environment, the user

• e.g., how is success measured? who is the user? what problems do you
encounter in your work?

• open-ended questions

• encourage a full and meaningful answer that uses the interviewee’s own
knowledge

• closed questions

• have a short answer (e.g., yes/no)

• good for confirming a specific idea

20

Elicitation: interviews,  
need a plan

• have a template

• list of context-free questions

• a few high-level open questions

• a clear idea of what you want to know

• ask the general questions first then the specific
questions later (why is this approach a good idea?)

• ask clear questions

21

Elicitation:  
interview template

• Establish customer and user profile

• name, responsibility, individual measure of success, elements that go against
success

• Assess the problem

• identify problems without good solutions, causes of problem, current solution,
desired solution

• Understand the user environment

• user background, education, computer literacy

• Recap for understanding

• repeat the problem in your own words, ask for feedback, clarifications,
additions

22

Elicitation:  
interviews exercise

• Mom calls up complaining about having too many
recipe cards, can’t find recipes, can’t plan shopping…

• She’s paying your room & board and tuition for
University so … you agree to make her an app

• Form a group of 4-6

• Who would you interview?

• What questions would you ask?

23

Elicitation:  
interviews pros and cons

• Pros:

• possible to ask clarification or follow-up questions

• rich collection of information (opinions, feelings, goals, hard facts, etc.)

• Cons:

• interviewing is a difficult skill to master

• can be time-consuming

• difficult for people to self-report

• mis-remember details

• forget or don’t realize implicit details

• misunderstandings due to lack of domain knowledge

24

Elicitation:  
when does it end?

• When all requirements are elicited?

• When a large portion of them are elicited?

"

• The “Undiscovered Ruin” problem

• Try asking an archaeologist: “How many undiscovered ruins are
there?” 
 

• Scope the problem to solve, find some ruins, have the stakeholder
buy into the requirements

25

Remember: 
requirements activities

• Elicitation

• Analysis

• Specification

• Validation

26

Analysis

27

Analysis
• Analyze the results of elicitation

• are the answers consistent?

• identify trouble spots?

• identify boundaries?

• identify most important requirements?

• possibly iterate over elicitation again

• could need to have stakeholders negotiate

28

Remember: 
Requirements activities

• Elicitation

• Analysis

• Specification

• Validation

29

Specification

30

Specification
• There is no one standard or method for specifying (i.e., writing

down) requirements

• Different specification methods have different levels of formality

• the more formal, the more one can precisely state requirements
and then verify the implemented system meets the requirements

• the more formal, the more one might be able to analyze the
requirements for consistency, etc.

• the more formal, typically the more time, not all projects want to
spend a lot of time and effort in writing requirements precisely

• particularly if requirements will change often

31

Specification: one standard for a
requirements document

Section 3
can be in
different

forms

32

Specification: 
specifying functional requirements
• we will look at how to use “use cases” for specifying functional

requirements

• a use case is

• a description of the possible sequences of interactions
between a system and its external actors related to a
particular goal!

• many use cases for an entire system

• does not constitute the entire specification

• just part of the SRS (see slide before)

33

Specification: 
use case formats

• brief use case

• a few sentences summarizing the use case

• casual use case

• one or two paragraphs of text, informal

• fully-dressed use case

• a formal document on a detailed template

• the most common meaning

34

Specification: 
 casual use case example

Cockburn, A. Writing Effective Use Cases. Addison-Wesley.

35

Specification: 
fully-dressed use case (1)

36

37

38

Specification: 
another use case example

http://epf.eclipse.org/wikis/openup/
core.tech.common.extend_supp/guidances/examples/

use_case_spec_CD5DD9B1.html

39

Specification: 
use case diagrams (aside)

40

Specification: 
use case diagrams (aside)

• use case diagrams show packaging and decomposition of use cases not
their content

• each ellipse is a use case

• only top-level services should be shown

• not their internal behaviour

• actors can be other systems

• the system (black outline) can be an actor in other use case diagrams

• are not enough by themselves

• must individually document use cases

41

Specification: 
user story

• a user story is a short description of something your customer will do when they
use your software focused on the value or result they will receive from doing this
thing

• used a lot in agile development

• ~3 sentence description of what a software feature should do

• written in the customer’s language

• should only provide enough detail to make a low-risk time estimate (a few days)

• Role-Goal-Benefit form:

• “As a <ROLE>, I want to <GOAL> in order to <BENEFIT>”

• As a student, I need to login to Piazza to finish the assignment

42

Specification: 
user story examples

• good (brief) examples:

• As a user, I want to search for contacts so I can message them.

• As a customer, I want to search for product items, so I can buy them.

• As an employer, I want to post a job on the website so people can
apply for it.

• NOT user stories:

• implement contact list view ContactListView.java

• define the product table database schema

• automate the job posting algorithm

43

Specification: 
user story exercise #1

• let’s get the basic idea of use stories…

• in a group of 2…

• write 2-4 user stories for Amazon

• you should be writing 2-3 brief sentences in the form
of “As a <ROLE>, I want to <GOAL> in order to
<BENEFIT>” 
 

• Warning: I will be calling on some pairs to share…

44

Specification: 
characteristics of good use stories
• good use cases follow INVEST:  
 
Independent 
Negotiable 
Valuable to users or customers  
Estimable 
Small 
Testable

45

Specification: 
310 user story format (for now)
• for the user stories you will create for your

assignment next week, you will follow a format
that…

• has 2-3 sentences of description

• a number of tests that determine if the use case
is satisfied

46

Specification: 
310 format example #1

• As a company, I can use my credit card so I can pay for job
postings

• Notes: Accepts Visa, MasterCard, Amex. Consider: Discover

• Test with Visa, MasterCard and Amex

• Test with Diner’s Club

• Test with good, bad, and missing card ID numbers

• Test with expired cards

• Test with over $100 and under $100

47

Specification: 
310 format example #2

• As a Creator, I want to upload a video from my local machine so that any user can view it.

• Note: …

• Test:

• Click the “upload” button

• Specify a video file to upload

• Check that .flv, .mov. … extensions are supported

• Check that files larger than 100MB results in an error

• Check that movies longer than 10 min result in an error

• Click “upload video” button

• Check that progress is displayed in real time. 

48

Specification: 
user story exercise #2

• let’s extend our basic idea of use cases…

• in a group of 2…

• take your 2-4 user stories for Amazon from exercise #1
(or use the ones I provide)

• add any notes

• add tests 

• Warning: I will be calling on some pairs to share…

49

Specification: 
user stories in agile development
• if the user story is a product backlog item also

include

• specifies acceptance or completion criteria that
defines what is meant for this feature to be DONE

• provide estimate of the required effort (story
points)

• exercise on your own: take your Amazon user stories
and try to prioritize them and add an effort estimate

50

Specification:  
what makes a good use story?
Independent  
 
Negotiable 
 
Valuable to Users or Purchasers  
 
Estimable 
 
Small  
 
Testable

you are responsible
for this material. Please

read it and ask
questions in the next

lecture. (The
material should be

straightforward)

51

Specification: 
independent user stories

• little dependence between stories

• keeps development flexible

• makes estimation easier

52

Specification:
negotiable user stories

• details are negotiated between developers and
users

• stories become reminders of what has been
negotiated (especially tests)

53

Specification: 
valuable to purchasers or users
• Customer:

• Purchaser: person who pays for the software

• User: person who uses the software

• Make sure customer can estimate value of a story

• Not intended to be valuable only to developers

• The backend database will be MySQL (no value to
user, just restricts your options)

54

Specification: 
estimable

• a developer should be able to estimate how long a
story should take to complete

• helps in planning

• problems:

• lack of domain knowledge -> ask customer

• lack of technical knowledge -> brush up on tech

• story is too big -> break it up

55

Specification: 
small

• stories should be “just the right size”

• rule-of-thumb: half a day to several days to implement

• too big:

• estimate inaccurate + no value delivered until story is complete

• compound suggests break it up

• too small:

• writing down the story may take longer than implementing it!

• combine if too small

56

Specification: 
testable

• the story should have a test that goes with it to
demonstrate that the story is implemented

• two types

• automated (e.g., JUnit test)

• manual (e.g., an untrained user should be able to
complete the steps in less two minutes)

57

Remember: 
Requirements activities

• Elicitation

• Analysis

• Specification

• Validation

58

Validation

59

Validation (for an SRS)
• A good requirement specification (SRS) must be

• Correct

• Complete

• Unambiguous

• Consistent

• Ranked for importance and stability

• Modifiable

• Traceable
Lauesen, S. Software Requirements, Addison-Wesley, 2002

60

Validation: 
inspection

• Most common errors:

• Omission: A requirement is missing

• Inconsistency: Conflicting requirements

• Incorrect facts

• Ambiguity

• Inspection is the primary way to validate SRS

• Should include various stakeholders (e.g., SRS author, client,
designer, end-user, etc.) 

61

Validation:  
checklist

1. Do requirements exhibit a clear distinction between function and data?

2. Do requirements define all the information to be displayed to the users?

3. Do requirements address system and user responses to error conditions?

4. Is each requirement stated clearly, concisely and unambiguously?

5. Is each requirement testable?

6. Are there ambiguous or implied requirements?

7. Are there conflicting requirements?

8. Are there areas not addressed in the SRS that need to be?

9. Are performance requirements stated?

62

https://help.rallydev.com/writing-great-user-story

63

Requirements Activity 
(you need to hand in your work at end of class

with names/ids on it)

64

1. Form large groups (6-8)

2. I’ll give you a sample system name and
description.

3. Construct 3-6 simple user stories (no test info
needed) to indicate the functionality you expect
from the software you would build.

• “As a <ROLE>, I want to <GOAL> in order to
<BENEFIT>”

65

4. Send one person from your group to a group with a  
 different #. DO NOT BRING YOUR USER  
 STORIES WITH YOU! 
 
5. The visitor is now a user and the group the visitor 
 joined is now the development team. Using 
 the interview techniques we’ve discussed, the  
 development team needs to interview the user. 
 Write 3-6 user stories about what you learn. 
 
 DO NOT ASK THE USER DIRECTLY FOR THEIR 
 USER STORIES! 
 
6. Give the user their stories and send them back to  
 their group. Discuss what comes back to your group. 
 
7. Hand in the name of the system you first wrote user stories for, 
 a name for the user stories that you wrote when the user visited you 
 and all the names/ids of your group on a sheet and hand it in at the front.

66

