
CPSC 310 – Software Engineering

Lecture 5

Collaborative Development &
Source Code Versioning

Huge thanks to Sebastien Mosser (sebastien.mosser@unice.fr) for the slides

mailto:sebastien.mosser@unice.fr

developer
piece of

software

works on

�2

Collaborative
Development

�3

�4

Email?

USB Key?

Shared directory?
�4

????
�5

�7

«Why do we version source code?» Motivations (among others)

windchime(c)

Before

�9

After

�10

�11

�11

BUG!
�11

«not me!» «not me!»

«not me!»«not me!»

BUG!
�11

To trace changes!

«Why do we version source code?»

�12

�13

�13

BUG! �13

BUG! �13

BUG! �13

...

BUG! �13

Here is the
new release!

�14

BUG!

Here is the
new release!

???

�14

BUG!

Here is the
new release!

???

It was working  
2 days ago...

�14

BUG!

Here is the
new release!

???

It was working  
2 days ago... Can I see it?

�14

To rollback changes!

«Why do we version source code?»

�15

�16

rollback

�16

�17

�17

??? ???
�17

??? ???
�17

To share changes!

«Why do we version source code?»

�18

�19

�19

�19

Centralized Model (e.g., CVS, Subversion)
�20

Shared
Repository

create
�21

checkout export

Shared
Repository

�22

Shared
Repository

�23

Shared
Repository

�23

commit

Shared
Repository

�23

commit update

Shared
Repository

�23

Shared
Repository

�24

Shared
Repository

�24

commit

Shared
Repository

�24

commit

Shared
Repository

�24

commit commit

????

Shared
Repository

�24

#1: different files

Atomic operations. No problem at all! �25

#2: different part of the same file

File Locking (old school) �26

#2: different part of the same file

File Locking (old school)

1. lock

�26

#2: different part of the same file

File Locking (old school)

1. lock
X reject!

�26

#2: different part of the same file

File Locking (old school)

1. lock
X reject!

�26

#2: different part of the same file

File Locking (old school)

1. lock
X reject!

2. unlock
�26

Automatic merge

#2: different part of the same file

�27

�28

#3: same part of the same file

Conflict! �29

http://geekandpoke.typepad.com/geekandpoke/2010/10/being-a-code-made-easy-chapter-1.html

�30

http://geekandpoke.typepad.com/geekandpoke/2010/10/being-a-code-made-easy-chapter-1.html

�31

commit

X

Shared
Repository

�32

update

Shared
Repository

�33

update

Conflict!

Shared
Repository

�33

Conflict!

Shared
Repository

�34

Conflict!

Shared
Repository

�34

Resolved!

Shared
Repository

�34

commit

Resolved!

Shared
Repository

�34

commit

Resolved!

update

Shared
Repository

�34

Distributed Model (e.g., Bazaar, Git)
�35

Centralized = 1 repository

Distributed = N repository
�36

He who can do more
can do less

when N = 1, Centralized = Distributed

�37

repository

clone clone

�38

add
commit

completely offline!

�39

untracked
artefacts
lifecycle

[Pro Git, #2.2] �40

untracked unmodified

add

artefacts
lifecycle

[Pro Git, #2.2] �40

untracked unmodified

modified
add

artefacts
lifecycle

[Pro Git, #2.2] �40

untracked unmodified

modified

staged

add

stage

artefacts
lifecycle

[Pro Git, #2.2] �40

untracked unmodified

modified

staged

add

stage

commit

artefacts
lifecycle

[Pro Git, #2.2] �40

untracked unmodified

modified

staged

add

rm

stage

commit

artefacts
lifecycle

[Pro Git, #2.2] �40

add
commit

push

pull

�41

commit

add commit push

Centralized
Distributed

�42

Seriously?
�43

push

push

push

pull

Distribution!

�44

Spiderman’s
Theorem

«With great power comes
great responsibility»

�45

Best Practices

A commit should be a logical unit and have a
descriptive message (avoid http://whatthecommit.com/)

Commit/Update frequently

Inspect your changes before committing

Don't break the build (unit tests) if not expected by
the others

http://whatthecommit.com/

DO VERSION

Source code of any sort (Java, HTML,CSS, etc.)

Images

Configuration files

Documentation (related to process and product)

Automated Tests

Files related to the project

DO NOT VERSION

Generated Artifacts

 | compiled code, documentation, etc.

Local build environment information

Secured information

Use ignore mechanism provided by VCS
For Git see: https://github.com/github/gitignore

https://github.com/github/gitignore

Version control
strategy for your

team

?

http://thenounproject.com

The Noun Project
Icon Template

Reminders

Strokes

Try to keep strokes at 4px

Minimum stroke weight is 2px

For thicker strokes use even
numbers: 6px, 8px etc.

Remember to expand strokes
before saving as an SVG

Size

Cannot be wider or taller than

100px (artboard size)

Scale your icon to fill as much of
the artboard as possible

Ungroup

If your design has more than one
shape, make sure to ungroup

Save as

Save as .SVG and make sure “Use
Artboards” is checked

100px

.SVG

Conclusions
�46

Why do we version code?

�47

To trace changes!

To rollback changes!

To share changes!
(among others)

Why do we version code?

�48

To trace changes!

To rollback changes!

To share changes!
(among others)

Different models for code versioning

�49

Centralized
versus

Distributed

He who can do more
can do less

when N = 1, Centralized = Distributed

(also works for P = NP)
�50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

