
CPSC 310 – Software Engineering

Quality

Learning Goals
By the end of this unit, you will be able to:

Describe aspects that affect software quality other than
code quality

Explain the benefits of high quality code

Explain why we can’t sufficiently measure code quality with
testing alone

Describe mechanisms for improving code quality (code
reviews, pair programming, refactoring, software metrics)

3

Therac-25

Computerized radiation
therapy machine

 Shallow tissue: direct electron beam
 Deeper tissue: electron beam converted into X-ray photons

 accidents occurred when high-energy electron-beam was activated without
target having been rotated into place; machine's software did not detect this

 First case in 1984: lawsuit but manufacturer refused to believe in a
malfunction of Therac-25

 Second case in 1985: display indicated “no dose” so operator repeated 5
times; patient died 3 months later

 Overall six accidents with ~100 times the intended does between 1985 and
1987; 3 patients died

4See more at http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html

http://courses.cs.vt.edu/cs3604/lib/Therac_25/Therac_1.html

Therac-25: some problems

5

 The design did not have any hardware interlocks to prevent the electron-
beam from operating in its high-energy mode without the target in place.

 The engineer had reused software from older models. These models had
hardware interlocks and were therefore not as vulnerable to the software
defects.

 The hardware provided no way for the software to verify that sensors were
working correctly.

 The equipment control task did not properly synchronize with the operator
interface task, so that race conditions occurred if the operator changed the
setup too quickly. This was evidently missed during testing, since it took
some practice before operators were able to work quickly enough for the
problem to occur.

 The software set a flag variable by incrementing it. Occasionally an
arithmetic overflow occurred, causing the software to bypass safety
checks.

from: Stephen Dannelly

Therac-25
Many factors:
Programming errors / race conditions

No independent review of software

Inadequate risk assessment together with overconfidence in software

Therac-25 software and hardware combination never tested until
assembled at the hospital

poor human computer interaction design

a lax culture of safety in the manufacturing organization

management inadequacies and lack of procedures for following through
on all reported incidents

6

What is Software
Quality?

According to IEEE
 The degree to which a system, component or process meets the specified

requirements.

 The degree to which a system, component or process meets the customer
or user needs and expectations.

9

What is Software
Quality?

According to Roger Pressman
 Conformance to explicitly stated functional and performance

requirements, explicitly documented development standards, and
implicit characteristics that are expected of all professionally
developed software.

10

Software Quality Attributes
 ISO9126:

• Functionality: the ability of the system to do the work
for which it was intended, incl Security.

• Reliability: can it maintain performance?

• Maintainability: can it be modified?

• Efficiency: performance and resource consumption.

• Usability: effort needed to use the system.

• Portability: can the system move to other environments?

• Quality can be process, internal, external, or ‘in-use’

17

Overall Quality

Quality is a chain: good process good internal quality →
 good external quality happy customer→ →

Assessing quality:
 Quality Assurance (QA): test the process quality (CMM, ISO9000, TQM, etc)

 (Independent) V&V

 Verification: did we build it right? internal

 Validation: did we meet requirements? external

Code Quality

11

In this lecture, we
focus on code quality

Requirements Design Code Test

Not the only element of
Software Quality

12

Software
Quality

Code
Quality

Other elements of Software
Quality

 Faulty definition of requirements

 Client-developer communication failures

 Logical design errors

 Shortcomings of the testing process

 Procedure errors

 Time management problems

 …
13

 Joel Test: 12 steps to better code
1. Do you use source control?
2. Can you make a build in one step?
3. Do you make daily builds?
4. Do you have a bug database?
5. Do you fix bugs before writing new code?
6. Do you have an up-to-date schedule?
7. Do you have a spec?
8. Do programmers have quiet working conditions?
9. Do you use the best tools money can buy?
10. Do you have testers?
11. Do new candidates write code during their interview?
12. Do you do hallway usability testing?

Original version http://www.joelonsoftware.com/articles/fog0000000043.html
 “Updated” version http://geekswithblogs.net/btudor/archive/2009/06/16/132842.aspx

http://www.joelonsoftware.com/articles/fog0000000043.html
http://geekswithblogs.net/btudor/archive/2009/06/16/132842.aspx

An Example

Is there anything wrong with this code?

16

char b[2][10000],*s,*t=b,*d,*e=b+1,**p;main(int
c,char**v)
{int n=atoi(v[1]);strcpy(b,v[2]);while(n--)

{for(s=t,d=e;*s; s++){for(p=v+3;*p;p++)if(**p==*s)
{strcpy(d,*p+2);d+=strlen(d); goto x;}*d+
+=*s;x:}s=t;t=e;e=s;*d++=0;}puts(t);}

Recipe for a Disaster
 Ignore what the customers say they want – the developers

surely must know better.

 Put in all the features that could potentially ever be useful.

 Do not worry about quality aspects (and ignore
the related practices) until the deadline
approaches.

 Do not waste time on design or documentation – after all,
code is the most important thing and time is already too
short to do all that needs to be done.

20

Some of the Major Mechanisms for
Quality Code
 Cultural mechanisms

 Teamwork / Team-Building
 Organizational Values

 Human mechanisms
 Code Reviews
 Refactoring

 Automatic mechanisms
 Style checkers
 Quality Metrics

Cultural Mechanisms

 Teamwork / Team-Building

 Organizational Values

Teamwork / Team Building
 “No matter what the problem is, it’s always a people problem.”

- Jerry Weinberg

 Techniques

 Ice-breaker

 Personality test

 Casual meetings

 Inclusive teams

 Open communication

 Transparent decision making

 Table football?
23

Organizational Values
 “The structure of a computer program reflects the structure

of the organization that built it.”
- Conway’s Law

 Rigid hierarchical structure

 Decisions are handed down, no ability to dispute

 Less input into each decision, less motivation?

 Less discussions could lead to faster decisions (although…)

 Flexible, collaborative, team-based structure

 Better decisions through collaboration

 Different people focus on different issues, cover all bases

24http://research.microsoft.com/apps/pubs/default.aspx?id=70535

Human Mechanisms

 Code Reviews

 Refactoring

26

http://research.microsoft.com/apps/pubs/default.aspx?id=70535

Code Reviews

 Formal code review meetings
 Well defined, specific participant roles and responsibilities, documented review

procedure, reporting of process…

 Lighter weight methods of code reviews
 Tool-assisted code review

 Ad-hoc review (over-the-shoulder)

 Peer deskcheck / Email pass-around

 Pair programming

27

See more at http://smartbear.com/smartbear/media/pdfs/wp-cc-11-best-practices-of-peer-code-review.pdf

http://en.wikipedia.org/wiki/Code_review

Formal Review Meetings

28

http://smartbear.com/smartbear/media/pdfs/wp-cc-11-best-practices-of-peer-code-review.pdf
http://en.wikipedia.org/wiki/Code_review

Formal Reviews –
Reviewee (Author)

 Be quiet while you listen to the entire
criticism/question

 Deliver defense in term of the problem you
were trying to solve

 Your code is on trial, not you!

29

Formal Reviews –
Reviewer
 Criticize the code, not the developer

 Before declaring a piece of
code wrong, ask why it was
done the way it was

 Remember: this is your
colleague and s/he will be
reviewing you in the future

30

Formal Reviews –
Moderator

 Keep review flowing

 Keep people on topic

 Break infinite loops

31

Formal Reviews –
Recorder
 Take notes describing the defects that were detected

32

Formal Reviews – Praise!

 Make sure to notice
something unique or

 elegant

 Acknowledge when a
developer is trail blazing

33

Formal Reviews –
Problems

 Real problems are interpersonal

 Watch for:
 Personal instead of

code criticism

 Axe grinding

 Stylistic criticism

34

Lighter weight methods of code reviews

• Tool-assisted code review: Authors and reviewers use specialized tools
designed for peer code review.

• Ad-hoc review (over-the-shoulder): One developer looks over the author's
shoulder as the latter walks through the code.

• Peer deskcheck: (Only) one person besides the developer reviews the code.

• Email pass-around: Multiple developers may be involved in a concurrent, online
deskcheck or source code management system emails code to reviewers
automatically after a check-in

• Pull Request review

• Pair Programming: Two authors develop code together at the same workstation,
such as is common in Extreme Programming.

Tool-assisted code review
There are many examples of tools you can use for

code reviews

e.g.

ReviewBoard

 (http://www.reviewboard.org)

Code Collaborator

 (http://smartbear.com/products/software-development/code-review)

Pair Programming (1)
 Increased discipline. Pairing partners are more likely to "do

the right thing" and are less likely to take long breaks.

 Better code. Pairing partners are less likely to produce a bad
design due to their immersion, and tend to come up with higher
quality designs.

 Multiple developers contributing to design. If pairs are
rotated frequently, several people will be involved in developing a
particular feature. This can help create better solutions,
particularly when a pair gets stuck on a tricky problem.

 Improved morale. Pair programming can be more enjoyable for
some engineers than programming alone.

http://www.reviewboard.org/
http://smartbear.com/products/software-development/code-review

Pair Programming (2)
 Collective code ownership. When everyone on a

project is pair programming, and pairs rotate frequently,
everybody gains a working knowledge of the entire
codebase.

 Mentoring. Everyone, even junior programmers, possess
knowledge that others don't. Pair programming is a
painless way of spreading that knowledge.

 Team cohesion. People get to know each other more
quickly when pair programming. Pair programming may
encourage team gelling.

Refactoring
 Quality of code decays over time

 Need to spend time cleaning up

 Common problems:

 Duplicated code

 Hard-to-read code

 Long methods

 No refactoring = lazy programming

41

Software metrics

Variety of measures proposed for assessing software
quality and complexity:

• Function points, cyclomatic complexity, fan-in/fan-out

• All of them are highly correlated with LOC.

Metrics are highly context-sensitive.

Most substantial effort: COCOMO and
COQUALMO models from USC/Barry Boehm

More objective metrics come from dynamic
analysis (profiling)

http://en.wikipedia.org/wiki/Project_management_triangle

Process metrics
Velocity and burndown charts:
 How many stories are left?
 How many story points are we finishing per day (throughput)

Lead time:

 What is time between task creation and task close?

Work in progress:

 How many items are we still working on?

Capture these last two measures using a Cumulative Flow
Diagram to measure throughput.

 One characteristic of a Kanban approach to organizational
change.

Summary
 Software Quality is a large problem

 Code quality is an important part of it
 Code quality is difficult to assess directly

 Usually associated to process quality
 Good mechanisms for these processes

 Cultural, Human, Automatic
 Pair programming, software metrics

 Good design ➔ Good code
 In a future lecture: Refactoring and code smells

55

	CPSC 310 – Software Engineering Quality
	Learning Goals
	Therac-25
	Therac-25: some problems
	Therac-25
	What is Software Quality?
	What is Software Quality?
	Software Quality Attributes
	Overall Quality
	Code Quality
	Not the only element of Software Quality
	Other elements of Software Quality
	Joel Test: 12 steps to better code
	An Example
	Recipe for a Disaster
	Some of the Major Mechanisms for Quality Code
	Cultural Mechanisms
	Teamwork / Team Building
	Organizational Values
	Human Mechanisms
	Code Reviews
	Formal Review Meetings
	Formal Reviews – Reviewee (Author)
	Formal Reviews – Reviewer
	Formal Reviews – Moderator
	Formal Reviews – Recorder
	Formal Reviews – Praise!
	Formal Reviews – Problems
	Lighter weight methods of code reviews
	Tool-assisted code review
	Pair Programming (1)
	Pair Programming (2)
	Refactoring
	Software metrics
	Process metrics
	Slide 37
	Summary

