
CPSC 310 – Software Engineering

Testing

 Introduction (Proving and Testing)
 Types of Testing

 Unit, Integration, Regression, System, Acceptance
 Testing Tactics

 Functional (Black Box), Structural (White Box)
 Stopping Criteria

 Equivalence Class Partitioning, Boundary Tests, Coverage
 Who should test the software?

Overview

By the end of this unit, you will be able to:

Explain differences between proving and testing.

Explain to a manager why testing is important and what its
limitations are as well as who should be involved in testing.

Be familiar with the different kinds of testing and choose which
one(s) to use.

Be able to generate test cases that provide statement, branch
and basis path coverage for a given method.

Learning Goals

 Dynamic
 Program is executed

 Builds confidence
 Can only show the presence of

bugs, not their absence!

 Used widely in practice

 Costly

 Formal methods
 Static

 Program is logically analyzed

 Theoretically could show

 absence of bugs
 Applicability is practically

limited
 Extremely costly

From David Notkin’s slides

Should be considered to be complementary, not competitive. Testing
is by far more dominant approach to assess software products.

Testing vs. Proving

Proving example

static int someMethod(int x, int y) {
if(x > y) {

return x - y;
} else if(x < y) {

return y - x;
} else {

return x + y;
}

}

Can this function ever return a negative number?

Who uses proofs?

 Everyone should know about testing!
 Developers test code
 Testers test systems
 Managers plan out the test procedures

 Industry averages
 1-25 errors per 1000 lines of delivered code
 Microsoft

 10-20 errors/kloc internal, 0.5/kloc delivered
 Space Shuttle

 0 errors for 500 kloc

 So satellite rockets don’t explode
 So hospital patients are not accidentally killed (Therac accident)
 So Apple Maps isn’t terrible
 So credit card numbers don’t get stolen
 So a development team has mutual trust and a fun time working together

Why Test?

 Verification: “Did we build the system right?”
 Discover situations in which the behavior of the software is incorrect or

undesirable

 Validation: “Did we build the right system?”
 Demonstrate to the developer and the customer that the software meets its

requirements

Testing Goals

Testing Terminology
Testing: Execute a program or program unit with a test set to

determine if the expected output is produced

Test Case: A set of value assignments to each input
parameter and expected values for each output

Test Set: A set of test cases

Exhaustive testing: A test set which covers
all possible inputs.

Almost always infeasible

Exhaustive Testing

 Searching the haystacks:
 Writing test cases
 Each test case covers part of the program

 Finding a needle
 Finding a bug
 Showing the presence of an error

 Searching every inch of the haystacks
 Exhaustive testing
 Showing the absence of an error

Metaphor: Looking for needle in haystack

Exhaustive Testing

boolean and(boolean x,
boolean y) {

…
}

Can we exhaustively test this
function?

Exhaustive Testing

int hypot(int x, int y) {
…

}

Can we exhaustively test this
function?

Exhaustive Testing

int[] sort(int[] arr) {
…

}

Can we exhaustively test this
function?

Exhaustive Testing

int[] sort(int[] arr) {
…

}

Can we exhaustively test this function?

arr.length number of inputs
0 1
1 4,294,967,296
2 18,446,744,073,709,551,616
3 79,228,162,514,264,337,593,543,950,336

“Testing can show the presence, but
not the absence of errors”

Testing can help nonetheless!

Dijkstra’s Law

Testing is challenging

Testing is challenging

“No Silver Bullet” (Brooks ‘86):

must rely on combination of logical reasoning, math,
experience, and creativity

• Unit
• Integration
• Regression

• Continuous integration
• System
• Acceptance

Types of Testing

A unit is the smallest testable part of an application.

Units may be:
 functions / methods
 classes
 composite components with defined interfaces used to access their

functionality

Who does Unit Testing?
 Software developers (i.e. software engineers, programmers)

Unit Testing – Definition

 Uncover errors at module boundaries
 Frequently programmatic

 It is important to keep specification up to date with
implementation

 Developers often forget to update specification based on test
results

Unit Tests

JavaDoc or
other specification

Unit
specs Unit Test Unit

Individual units are combined and tested as a group.

Shows that major subsystems that make up the project work
well together.

Phase of development where “Mock objects” are replaced by
real implementation

Who does Integration Testing?
 Software development teams

Integration Testing – Definition

• Often we rely on portions of the system which are
• non-deterministic
• slow
• user-driven
• not yet built

• Mocks adhere to the contract (interface) but
simulate behavior

• Real implementation is substituted in production

Mock Objects

public class MockWeatherService implements WeatherService
{

public double getCurrentTemp(String city) {
return Math.random() * 32;

}
}

•One idea here is that software developers usually should not throw up
their hands and say:

“I can’t test my code until others finish their part of the system”

Mock example

Testing the system to check that changes have not ‘broken’
previously working code

Not new tests, but repetition of existing tests

JUnit makes it easy to re-run all existing tests

This is why it is so important not to write “throwaway tests”

Who does Regression Testing?
 Software developers (i.e. software engineers, programmers)

Regression Testing

● Everyone commits to mainline (a designated branch) every day.

● Every commit/merge results in an automated sequence of events:

● build, run unit tests, run integration tests, run performance tests

● Who does continuous integration?

– Software developers thanks to dedicated tooling

Continuous integration

Hudson!
http://hudson-ci.org/

http://jenkins-ci.org/

http://hudson-ci.org/
http://jenkins-ci.org/

 Testing large parts of the system, or the whole
system, for functionality.

 Test the system in different configurations.

 Who does System testing?
 Test engineers
 Quality assurance engineers

System Testing – Definition

 Recovery testing
 Forces the software to fail in various ways and

verifies that recovery is properly performed.

 Security testing
 Verifies that the protection mechanism will protect

the software against improper penetration

 Stress testing
 Executes the system in a manner that demands

resources in abnormal quantity, frequency or volume

System Tests

 Example system testing tools

 Selenium
 Web application user interface testing
 Record and replay web user actions
 http://www.seleniumhq.org/

 Apache JMeter
 Application for stress testing
 http://jmeter.apache.org/

System Tests

http://www.seleniumhq.org/
http://jmeter.apache.org/

Formal testing with respect to user needs and requirements
conducted to determine whether or not the software satisfies the
acceptance criteria.

Does the end product solve the problem it was intended to solve?

Who does acceptance testing?
Test engineers
 and customers

Acceptance Testing – Definition
Validation Activity

 Typically incremental
 Alpha test : At production site
 Beta test : At user’s site

 Work is over when acceptance testing is done

Acceptance Tests

Acceptance Test
Actual needs
and constraints Delivered

package

 Tests based on spec
 Treats system as atomic

 Covers as much
specified behaviour

as possible

 Tests based on code
 Examines system internals
 Covers as much

implemented behaviour as
possible

Testing Tactics

Structural
“white box”

Recall Flow Graphs from 210

White-Box testing and Control-flow Graph

Stopping criteria based on a model of the control-flow of the program

Node: represents a statement or an expression from a complex statement
e.g. a complex statement could be a for loop which includes
 initializer, condition, and increment expressions

Edge (i,j): represents transfer of control from node i to node j, that's the control
 flow
 i.e. node i might execute immediately before node j

We consider single method CFGs in this course

There is no standardized syntax for drawing CFGs.
–You will see many different syntax on the web
–Not a design tool like UML
–Different tools will draw them differently
–Many tools use them internally without drawing them

Statements

if (a > b) {
 a = b;
 x = x + 1;
}

print(x);

Example (in red): a = b

 x = x + 1

Conditional (if)
Conditionals have outgoing

arcs labeled true or
false

Example: a = b

 x = x + 1

a > b

print(x)

true

false
if (a > b) {
 a = b;
 x = x + 1;
}

print(x);

While Loop
Last statement in loop has a back edge to loop

condition

while (x > y) {
 x = x + 1;
 y = y * 2;
}
return y;

 x = x + 1

 x > y

 return y;

true

false

 y = y * 2

Single Method Control-Flow
Use two special nodes to denote entry and exit of
method

• Start points to first statement

 All return statements point to Exit
 Last statement in method points to Exit

 Start

 Exit

Method CFG
int testMethod(int a, int b, int x, int y) {

 if (a > b) {
 a = b;
 x = x + 1;
 }

 print(x);

 while (x > y) {
 x = x + 1;
 y = y * 2;
 }
 return y;

}

 a = b

 x = x + 1

a > b

 print(x)

true

false

 x = x + 1

 x > y

 return y;

true

false

 y = y * 2

Start

Exit

Discussion (5 mins): How should we model a
for loop in a CFG?

int y = getCount();
int x = 1;
for(int i = 0; i < y; i++) {

x = x * 2;
}
return x;

White-box Coverage Criteria
•Statement Coverage (SC)

–Synonym for node coverage
•Branch Coverage (BC)

–Synonym for edge coverage
•Path Coverage

–Full Path Coverage
–Basis Path Coverage

•There are many more (that are rarely used)…

http://en.wikipedia.org/wiki/Code_coverage

http://en.wikipedia.org/wiki/Code_coverage

White-box Coverage Criteria
•A chosen criteria, “X coverage”, is covered if execution of a test set
covers all X’s in the unit

e.g. statement coverage is satisfied if all statements in the unit are
executed

•For a given criteria:
–Desirable to choose the minimum number of test cases for a
given criteria

Statement Coverage Tools

covered

not
covered

1: Statement Coverage
Statement coverage requires
that each statement (node) in

the CFG is covered

What test set should we
choose to achieve

statement coverage of
this method:

void avg(int[] arr)

?

float avg = 0.0;
int i = 0;

avg += arr[i++]

println(i);

Exit

True
False

False
True

i < arr.length

i > 0

Start

println(avg/i);

Statement Coverage
•with pen/paper, people often write test sets as:

–Set of test cases
–Test case as a set of assignments to input variables
–e.g. { { x = 0, y = 0}, { x = 1, y = 1 }, { x = -1, y =1 }, { x = 1, y = -1} }

For example on previous slide:

{ {arr = [1]}, { arr = [1,2,3] } }

Criteria Rankings
Statement Coverage < Branch Coverage <
Basis Path Coverage < Path Coverage < Exhaustive Testing

If a test set satisfies some criteria then it also satisfies all
lower ranked criteria

Red are used most often in practice

2: Branch (edge) Coverage
What test set should we
choose to achieve branch

coverage of the avg
method?

void avg(int[] arr)?

float avg = 0.0;
int i = 0;

avg += arr[i++]

println(i);

Exit

True
False

False
True

i < arr.length

i > 0

Start

println(avg/i);

Criteria Ranking as Guidelines

•Criteria rankings are general guidelines

•e.g. Achieving branch coverage is frequently better than
achieving statement coverage

A test set which achieves a particular coverage criteria may
find less bugs than some other test set which achieves only a
lower ranked criteria

Example
Assume we want to avoid divide by zero in our program:

double test(double x, double y) {
if(x < y) {

x = x + y;
}
return x/y;

}

{ { x = 1, y = 2}, { x = 2, y = 1} } achieves BC and finds no bug
{ { x = -1, y = 0} } achieves only SC and finds a bug

3: Path Coverage
•Path: a sequence of edge-connected nodes

 from Start to End
•Feasible Path:

 a path along which execution can actually flow
•The concept of feasible paths help to highlight the distinction
between program syntax (structure) and program semantics
(behavior)
•“Path coverage” really means “feasible path coverage”

Where is the infeasible path?

float avg = 0.0;
int i = 0;

avg += arr[i++]

println(i);

Exit

True
False

False
True

i < arr.length

i > 0

Start

println(avg/i);

Why path coverage?
Finds more non-localized bugs:

–When dependence between particular statements causes bug
–Find a test set which has edge coverage but doesn’t execute
divide by zero

int test2(int x, int y) {
int i = -1;
if(x > 5)

i = 0;
if(y > 5)

x = 10/i;
return x * i;

}
we might try x=4, y=6.
or x=6, y=4
we might try x=4, y=6.
or x=6, y=4

Problems with Path Coverage

Basis Path Coverage
•Better than branch coverage (not as strong as path
coverage)
•Does not consider additional cycles caused by
repeating loops multiple times
•Ensures that pairs of conditionals/loops tested
independently

–Still doesn’t test all paths
–The outcome of one conditional/loop isn’t always
the same and isn’t always different from another

Creating a Basis Set
1. Choose a “baseline” path, add it to the basis set

– Any path developer thinks is a useful starting point
2. Repeat:

Add path to the basis set with one edge not already covered
(i.e. flip one previously executed decision)

3. Write test cases which execute along those paths

 Assuming all paths are feasible,
 minimum number of paths in basis set is:

N + 1, where N is number of conditionals/loops

Cyclomatic Complexity:
= #Edges - #Nodes + #terminal vertices (usually 2)
also = #Predicate Nodes + 1 (used above)
also = Number of regions of flow graph.

Cyclomatic Complexity:
= #Edges - #Nodes + #terminal vertices (usually 2)
also = #Predicate Nodes + 1 (used above)
also = Number of regions of flow graph.

TTT
FTT
TFT
TTF

TTT
FTT
TFT
TTF

 Identify which types of inputs are likely to be
processed in a similar way (equivalent behaviour)
 Coverage, disjointedness, representation

 This creates equivalence partitions

 Each test should exercise one and only one
equivalence partition

Equivalence Class Partitioning

Equivalence Class Partitioning

 System asks for numbers between 100 and 999

 Equivalence partitions:

 Less than 100

 Between 100 and 999

 More than 999

 Three tests:

 50, 500, 1500

Example of ECP

Test inputs starting from known good values and progressing through
reasonable but invalid to known extreme and invalid
e.g. max/min, just inside/outside boundaries, typical values and error values

Boundary Testing

It would be reasonable to test with: 3,2008, 2,2002, 2,2000
It would *not* be reasonable to test with: -1 MaxInt MinInt 0
It would be reasonable to test with: 3,2008, 2,2002, 2,2000
It would *not* be reasonable to test with: -1 MaxInt MinInt 0

A corner case is a problem or situation that occurs only outside of normal operating parameters—specifically one that
manifests itself when multiple environmental variables or conditions are simultaneously at extreme levels, even though each
parameter is within the specified range for that parameter.

A corner case is a problem or situation that occurs only outside of normal operating parameters—specifically one that
manifests itself when multiple environmental variables or conditions are simultaneously at extreme levels, even though each
parameter is within the specified range for that parameter.

Boundary testing is like ECP but looking specifically at edge (corner) cases.
Imagine testing the method: getDaysInMonth(int month, int year)

For example, if an input field is meant to accept only integer values 0–100, entering the
values -1, 0, 100, and 101 would represent the boundary cases. A common technique for
testing boundary cases is with three tests: one on the boundary and one on either side of
it. So for the previous example that would be -1, 0, 1, 99, 100, and 101.

 Better than random testing
 But only as good as your partitions!
 No exploration of combinations of inputs.
 Unfortunately, guessing is the best you can do if you are

using black box testing

How good is ECP and Boundary Testing?

Summary
• Path coverage is a structural criteria weaker than Exhaustive Testing

but still impractical

• Many tools tell when you have achieved:
– Statement coverage
– Branch coverage
– Basis path coverage

• But in general they don’t tell you how to achieve them
– Newer tools can suggest inputs for simple cases

• Coverage criteria gives you different goals to strive for

	CPSC 310 – Software Engineering Testing
	Overview
	Learning Goals
	Testing vs. Proving
	Proving example
	Who uses proofs?
	Why Test?
	Testing Goals
	Testing Terminology
	Exhaustive Testing
	Metaphor: Looking for needle in haystack
	Exhaustive Testing
	Exhaustive Testing
	Exhaustive Testing
	Exhaustive Testing
	Dijkstra’s Law
	Testing is challenging
	Testing is challenging
	Types of Testing
	Unit Testing – Definition
	Unit Tests
	Integration Testing – Definition
	Mock Objects
	Mock example
	Regression Testing
	Continuous integration
	System Testing – Definition
	System Tests
	System Tests
	Acceptance Testing – Definition
	Acceptance Tests
	Testing Tactics
	Recall Flow Graphs from 210
	White-Box testing and Control-flow Graph
	Statements
	Conditional (if)
	While Loop
	Single Method Control-Flow
	Method CFG
	Discussion: How should we model a for loop in a CFG?
	White-box Coverage Criteria
	White-box Coverage Criteria
	Statement Coverage Tools
	1: Statement Coverage
	Statement Coverage
	Criteria Rankings
	2: Branch (edge) Coverage
	Criteria Ranking as Guidelines
	Example
	3: Path Coverage
	Where is the infeasible path?
	Why path coverage?
	Problems with Path Coverage
	Basis Path Coverage
	Creating a Basis Set
	Equivalence Class Partitioning
	Equivalence Class Partitioning
	Example of ECP
	Boundary Testing
	How good is ECP and Boundary Testing?
	Summary

