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Design Patterns
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Learning Goals

● Understand what are design patterns, their 
benefits and their drawbacks

● For at least the following design patterns: 
Singleton, Observer, Adapter, you will be able to 
describe them, know when to use them or not and 
give examples of situations where you could use 
them. 
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A bit of history

”Each pattern describes a problem which 
occurs over and over again in our 
environment, and then describes the core of 
the solution to that problem, in such a way that 
you can use this solution a million times over, 
without ever doing it the same way twice”

“A pattern expresses a relation between a 
certain context, a problem and a solution”

Christopher
Alexander



  4/26

A bit of history, continued

The “Gang of Four” - GoF

image designed by Jessica Lock from the Noun Project

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design 
patterns: elements of reusable object-oriented software

OOP

World



  5/26

To be, or not to be

A Design Pattern IS:
– a way to benefit from the collective experience of skilled 

software developers
– an easy way to communicate about common problems

A Design Pattern IS NOT:
– the complete solution to your problem
– the only solution to your problem (but it's a proven one)
– something you should use if you do not understand it



  6/26

Creational Patterns 

            How an object can be created

Structural Patterns

            How objects can be composed 

Behavioral Patterns

            How objects communicate

Pattern Classification 
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Singleton pattern 

Intent: Make sure a class has only one instance, and 
provide a global point of access to it

Participants & Structure:

Singleton

- instance : Singleton

- Singleton()
+ getInstance() : Singleton
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Singleton pattern

public class Singleton {
    private static Singleton instance = null;
    private Singleton() { }
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
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Singleton pattern

public class Singleton {
    private static Singleton instance = null;
    private Singleton() { }
    public static synchronized Singleton getInstance() {
        if (instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}
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Creational Patterns 

            How an object can be created

Structural Patterns

            How objects can be composed 

Behavioral Patterns

            How objects communicate

Singleton pattern 

To which 
category
belongs 
this 
pattern ?
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Observer pattern 

Intent: Ensure that, when an object changes his state, all 
its dependents are notified and updated automatically

Participants & Structure:
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Observer pattern [example] 

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)
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Observer pattern [example] 

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

register bidders
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Observer pattern [example] 

4

8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

2. notify new bid

1. accept new bid
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Observer pattern [example] 

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

 retrieve 
new price
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Creational Patterns 

            How an object can be created

Structural Patterns

            How objects can be composed 

Behavioral Patterns

            How objects communicate

Observer pattern 

To which 
category
belongs 
this 
pattern ?
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Adapter pattern 

Intent: Convert the interface of a class into another 
interface that clients expect.

Participants & Structure:
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Adapter pattern 

Power supply adapter analogy
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Adapter pattern 

Concrete example
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Creational Patterns 

            How an object can be created

Structural Patterns

            How objects can be composed 

Behavioral Patterns

            How objects communicate

Adapter pattern 

To which 
category
belongs 
this 
pattern ?
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Design Pattern Collection

http://sourcemaking.com/design_patterns

Factory
Singleton
Decorator 
Proxy 
Template
Composite 
Adapter
Observer

http://sourcemaking.com/design_patterns
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Anti Pattern

● A bad solution to a 
recurring problem

● "Strong" code smell
● A good pattern in the 

wrong context can lead to 
an anti-pattern
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Anti Pattern

● Several categories
– Development
– Architecture
– Management

http://c2.com/cgi/wiki?AntiPatternsCatalog

http://sourcemaking.com/antipatterns

http://c2.com/cgi/wiki?AntiPatternsCatalog
http://sourcemaking.com/antipatterns
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Eg: Golden Hammer

● Problem: You need to choose technologies for your development, and you are of the belief that you must choose 
exactly one technology to dominate the architecture.

● Context: You need to develop some new system or piece of software that doesn't fit very well the technology that 
the development team are familiar with.

● Forces:

– The development team are committed to the technology they know

– The development team are not familiar with other technologies

– Other, unfamiliar, technologies are seen as risky

– It is easy to plan and estimate for development in the familiar technology

● Supposed Solution: Use the familiar technology anyway. The technology (or concept) is applied obsessively to 
many problems, including where it is clearly inappropriate.

● Refactored Solution: Expanding the knowledge of developers through education, training, and book study groups 
exposes developers to new solutions.

http://sourcemaking.com/antipatterns/golden-hammer

http://sourcemaking.com/antipatterns/golden-hammer


  25/26

Eg. Singleton Overuse

● Problems
– violate information hiding since dependencies are 

hidden in the code and not expressed in the interface
– can cause high coupling

● You must have a good damn reason to use it
– The fact that you know it is not enough

public void someMethod() ...
Profile.getInstance().getUserLevel()

public void someMethod(Profile profile) ...
profile.getUserLevel()
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Design Pattern Drawbacks

● Can make the design more complex if not needed
– Start simple and then refactor by using a design 

pattern if it is justified
– Do not try to anticipate future needs too much

● Can lead to bad design if not applied in the right 
context
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