
CPSC 310 – Software Engineering

Lecture 11

Design Patterns

 2/26

Learning Goals

● Understand what are design patterns, their
benefits and their drawbacks

● For at least the following design patterns:
Singleton, Observer, Adapter, you will be able to
describe them, know when to use them or not and
give examples of situations where you could use
them.

 3/26

A bit of history

”Each pattern describes a problem which
occurs over and over again in our
environment, and then describes the core of
the solution to that problem, in such a way that
you can use this solution a million times over,
without ever doing it the same way twice”

“A pattern expresses a relation between a
certain context, a problem and a solution”

Christopher
Alexander

 4/26

A bit of history, continued

The “Gang of Four” - GoF

image designed by Jessica Lock from the Noun Project

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design
patterns: elements of reusable object-oriented software

OOP

World

 5/26

To be, or not to be

A Design Pattern IS:
– a way to benefit from the collective experience of skilled

software developers
– an easy way to communicate about common problems

A Design Pattern IS NOT:
– the complete solution to your problem
– the only solution to your problem (but it's a proven one)
– something you should use if you do not understand it

 6/26

Creational Patterns

 How an object can be created

Structural Patterns

 How objects can be composed

Behavioral Patterns

 How objects communicate

Pattern Classification

 7/26

Singleton pattern

Intent: Make sure a class has only one instance, and
provide a global point of access to it

Participants & Structure:

Singleton

- instance : Singleton

- Singleton()
+ getInstance() : Singleton

 8/26

Singleton pattern

public class Singleton {
 private static Singleton instance = null;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

 9/26

Singleton pattern

public class Singleton {
 private static Singleton instance = null;
 private Singleton() { }
 public static synchronized Singleton getInstance() {
 if (instance == null) {
 instance = new Singleton();
 }
 return instance;
 }
}

 10/26

Creational Patterns

 How an object can be created

Structural Patterns

 How objects can be composed

Behavioral Patterns

 How objects communicate

Singleton pattern

To which
category
belongs
this
pattern ?

 11/26

Observer pattern

Intent: Ensure that, when an object changes his state, all
its dependents are notified and updated automatically

Participants & Structure:

 12/26

Observer pattern [example]

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

 13/26

Observer pattern [example]

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

register bidders

 14/26

Observer pattern [example]

4

8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

2. notify new bid

1. accept new bid

 15/26

Observer pattern [example]

4 8 15 16

Auctioneer
(Subject)

Bidders
(Observers)

 retrieve
new price

 16/26

Creational Patterns

 How an object can be created

Structural Patterns

 How objects can be composed

Behavioral Patterns

 How objects communicate

Observer pattern

To which
category
belongs
this
pattern ?

 17/26

Adapter pattern

Intent: Convert the interface of a class into another
interface that clients expect.

Participants & Structure:

 18/26

Adapter pattern

Power supply adapter analogy

 19/26

Adapter pattern

Concrete example

 20/26

Creational Patterns

 How an object can be created

Structural Patterns

 How objects can be composed

Behavioral Patterns

 How objects communicate

Adapter pattern

To which
category
belongs
this
pattern ?

 21/26

Design Pattern Collection

http://sourcemaking.com/design_patterns

Factory
Singleton
Decorator
Proxy
Template
Composite
Adapter
Observer

http://sourcemaking.com/design_patterns

 22/26

Anti Pattern

● A bad solution to a
recurring problem

● "Strong" code smell
● A good pattern in the

wrong context can lead to
an anti-pattern

 23/26

Anti Pattern

● Several categories
– Development
– Architecture
– Management

http://c2.com/cgi/wiki?AntiPatternsCatalog

http://sourcemaking.com/antipatterns

http://c2.com/cgi/wiki?AntiPatternsCatalog
http://sourcemaking.com/antipatterns

 24/26

Eg: Golden Hammer

● Problem: You need to choose technologies for your development, and you are of the belief that you must choose
exactly one technology to dominate the architecture.

● Context: You need to develop some new system or piece of software that doesn't fit very well the technology that
the development team are familiar with.

● Forces:

– The development team are committed to the technology they know

– The development team are not familiar with other technologies

– Other, unfamiliar, technologies are seen as risky

– It is easy to plan and estimate for development in the familiar technology

● Supposed Solution: Use the familiar technology anyway. The technology (or concept) is applied obsessively to
many problems, including where it is clearly inappropriate.

● Refactored Solution: Expanding the knowledge of developers through education, training, and book study groups
exposes developers to new solutions.

http://sourcemaking.com/antipatterns/golden-hammer

http://sourcemaking.com/antipatterns/golden-hammer

 25/26

Eg. Singleton Overuse

● Problems
– violate information hiding since dependencies are

hidden in the code and not expressed in the interface
– can cause high coupling

● You must have a good damn reason to use it
– The fact that you know it is not enough

public void someMethod() ...
Profile.getInstance().getUserLevel()

public void someMethod(Profile profile) ...
profile.getUserLevel()

 26/26

Design Pattern Drawbacks

● Can make the design more complex if not needed
– Start simple and then refactor by using a design

pattern if it is justified
– Do not try to anticipate future needs too much

● Can lead to bad design if not applied in the right
context

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26

