
Design Patterns

http://sourcemaking.com/design_patterns

Take home points for today:	

learn of the existence of several patterns (and kinds of patterns)	

have a high-level sense of how to distinguish/choose them based on when they’re meant to be used

Programming
“on your own” vs “with help”

• Think about what it feels like to solve a problem for
the very first time...	

• You need to think about the problem from scratch	

• You have to test very thoroughly, and maybe won’t
even think of all possible cases to test!

CS210 review to some extent..

Programming
“on your own” vs “with help”

• Now think about what it’s like when someone tells
you a possible solution	

• That solution includes a lot of knowledge,
experimentation, and testing! 	

• This saves a *lot* of time!!!

Design patterns: the ultimate
help

• Industry noticed this “on your own” versus “with
help” phenomenon too.	

• A community developed where people could describe
their solutions to commonly encountered problems,
and others could benefit	

• They called these solutions “Design Patterns”

Essentially...

• A Design Pattern is:	

!

!

!

• Basically, smart people, who have done this
a lot, are making a suggestion!

A Tried and True Solution	

To a Common Problem

The “Design Patterns” name
• The original use of the term

“Design Patterns” really comes
from Architecture (building
architecture) from
Christopher Alexander	

• These were architectural
idioms, to guide architectural
design (a house is composed
of a kitchen, bathroom,
bedrooms etc... to be placed in
certain basic configurations)

The Design Patterns
“format”

• Alexander provided a nice way to describe these
patterns:	

• PROBLEM (whats wrong?)	

• CONTEXT (what’s happening around the
problem)	

• SOLUTION (what to do)

Every Day Patterns...

• A Good Dinner Party

• PROBLEM: You want your guests to have fun and be impressed by your
prowess as a host, chef and sommelier.	

• SOLUTION (abridged): 	

• 1. invite people who will like each other. Or, if you want a more lively party,
people who will not like each other.	

• 2. greet your guests and introduce them to everyone who is already there.	

• 3. serve dinner, then dessert, then drinks, avoiding allergies of your guests.	

• WARNINGS: might lead to grogginess the next morning. Do not apply this
pattern the night before the use of the “Write an Exam” pattern.

You can have a “pattern” for anything where expert advice is helpful!

What about Software?

• Software Design Patterns are good ideas
For Software Development	

• They give advice for tricky issues that often
arise when building software programs.

Design patterns
adopted

• Software engineers adopted a similar approach for
describing common solutions to common problems	

• PROBLEM: intent, motivation, applicability	

• SOLUTION: structure, participants,
collaborations, implementation	

• CONSEQUENCES: warnings, known uses,
related patterns

For instance:

• A very common problem is monitoring, where an
object is interested in the status of another.	

• In software, this might be...	

• a game controller interested in players in a game	

• sessions in an internet application interested in a
central database	

• central process maintaining concurrent threads

Wants to Know
What's Going

On

Thing of
Interest

Thing of
Interest

Thing of
Interest

Wants to watch

We can relate to that issue...
Hi! We are scientists!We want to monitor aliensliving amongst us!

No objections here!

Our Basic Design...

callHome()

location
status

Alien

Martian

Vulcan

Vogons

fileReport()
applyForGrant()
spyOnAliens()

Scientist

Anthropologist

Linguist

Psychic

• Have all the aliens send a signal every time
something happens? 	

• Have them write to a log file? 	

• Have them send a message when they’re in
trouble?	

• There are so many options! Which is best?

At the moment, the scientists are 	

haphazardly spying on the aliens.

How could we design a better protocol?

Thankfully... there’s a pattern for that!

The Observer Pattern

where the “Observer”	

watches the “Subject”

Observer Subject

Cool with us!
we'll be

watching you!

yep - this is 210 review

• PROBLEM: an object (the “observer”) wants to
watch the status updates of another object (the
“subject”)	

• SOLUTION: the observer registers with the subject
for updates; the subject sends notices to the
observer	

• CONSEQUENCES: the observer might be
overloaded with updates. If so, tailor the design.

The Observer Pattern

Step 1: Register
• The observer has to

register with the
subject for updates.

• The subject puts them in
some kind of list or
record, to contact later.

Pam

sure! I will make a
note of your name

my name is Pam.
Can you tell me when
something changes?

Observer Subject

1. registerObservers()
2. storeObserver()

1 2

I got a new hat!

Step 2. Notify Observers!
• The Subject notifies the Observer of a change.

Hey Pam!
Something
changed!

what was it?

Should I tell
him it's too

small??

1 2

3

Subject Observer

1. notify
2. getState()

3. return state

Variation: Lots of Subjects
Observer registers with each one and then
waits for them each to notify of changes

register()

register()

register()

register()

Variation: Lots of Observers
The Subject loops through their list of Observers,

notifying each one of every change

notify()

notify()

notify()

notify()

notifyObservers:
 for each observer in ObserverList:
 observer.notify()

If the Observer is overloaded...
There are some more efficient options for notification

Tailored Push Model: the subject only
tells what it knows the observer wants to
hear notify(new hat)

notify(feeling sad)

notify(pay raise)

notify(existential crisis)

but now the subject has to maintain a lot of
knowledge about the observers! Coupling!

If the Observer is overloaded...
There are some more efficient options for notification

Pull Model: the subject sends a basic “notify” message, but
the observer only gets status details of interest.

but this can be slow, because it requires two
calls to get the status update

Hey Pam!
Something
changed!

How did you
guess?

I got a new hat!

this one's even
worse than the

last one!

tell me your hat status please!
It's all I care about.

So what’s the overall design?

From Wikipedia, 	

reprinted from Design Patterns book

fileReport()
applyForGrant()
spyOnAliens()

subjectList

Scientist

callHome()

location
status
observerList
state

Alien
registerObservers()
notifyObservers()
getState()

<<interface>>
Subject

notify()

<<interface>>
Observer

And there are patterns for
other situations too!

There are LOTS
of design patterns!

Design Patterns

Creational Structural Behavioural

Singleton

Factory

Abstract Factory

Builder

Prototype

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Interpreter

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Template

this is just some of them!

D
esign Patterns

C
reational

Structural
Behavioural

structural design patterns are design patterns that ease the design by
identifying a simple way to realize relationships between entities

creational design patterns are design patterns that deal with object creation
mechanisms, trying to create objects in a manner suitable to the situation.

behavioural design patterns are design patterns that identify common
communication patterns between objects and realize these patterns

Often, designs start out using Factory Method (less
complicated, more customizable, subclasses proliferate)
and evolve toward Abstract Factory, Prototype, or Builder
(more flexible, more complex) as the designer discovers

where more flexibility is needed. (GoF, p136)

Allows production of clones of a particular object
instance.

Allows incremental creation of an object over the
running of a system with the object being produced at
the end of a long customisation process.

AKA Factory Method pattern (because it’s a method) !
A “make it” method that returns objects of another
class, made all in one go, but with some collaboration
needed right then.

Creational

Singleton

Factory

Abstract Factory

Builder

Prototype

A class (that makes use of factories) that can be
extended to make families of objects that all need to
share a consistent theme.

One instance of a class, and only one instance!

make
something

make a family	

of somethings

make
something

slowly

clone
something

make one
thing

Sample Problem

• You need to create a class to manage
preferences. In order to maintain
consistency, there should only ever be one
instance of this class. How can you ensure
that only one instance of a class is
instantiated?
!

(Question: How could your preferences
become inconsistent if your class was
instantiated more than once?)

21

Singleton

Name: Singleton
Intent: Make sure a class has
a single point of access and is
globally accessible (i.e.
Filesystem, Display,
PreferenceManager…)
Participants & Structure:

22

Singleton Example

private static Singleton uniqueInstance = null;
public static Singleton getInstance() {
 if (uniqueInstance == null)
 uniqueInstance = new Singleton();
 return uniqueInstance;
}
// Make sure constructor is private!
private Singleton() {…}

23

otherwise anyone can make one!

31

We want to make an object, but
its construction is complicated, and

is practically a “responsibility” in
and of its own!

Seems like we need some
separation of responsibilities…

32

Factories can be used when:
1. The creation of an object makes reuse impossible without significant duplication
of code.
2. The creation of an object requires access to information or resources that should
not be contained within the composing class.
3. The lifetime management of the generated objects must be centralized to ensure
a consistent behavior within the application.

Creates objects without exposing the instantiation logic to the client.
Refers to the newly created object through a common interface

Simple Factory

33

But now I want to be able to
decide later (at runtime or

compile time) what’s actually
created!

Factory Method Pattern
Creating an object often requires complex

processes not appropriate to include within a
composing object. The object's creation may
lead to a significant duplication of code, may

require information not accessible to the
composing object, may not provide a sufficient

level of abstraction, or may otherwise not be
part of the composing object's concerns. The
factory method design pattern handles these
problems by defining a separate method for
creating the objects, which subclasses can
then override to specify the derived type of

product that will be created.

http://en.wikipedia.org/wiki/Factory_method

http://en.wikipedia.org/wiki/Factory_method

Factory Method Pattern http://en.wikipedia.org/wiki/Factory_method

A maze game may be played in two
modes, one with regular rooms that are
only connected with adjacent rooms,
and one with magic rooms that allow
players to be transported at random

the factory method pattern is a creational
pattern which uses simple factory

methods to deal with the problem of
creating objects without specifying the

exact class of object that will be created.

http://en.wikipedia.org/wiki/Factory_method

Factory Method Pattern http://en.wikipedia.org/wiki/Factory_method

To implement the other game
mode that has magic rooms,

it suffices to override the
makeRoom method

http://en.wikipedia.org/wiki/Factory_method

We want to make themes of
classes — and we don’t want to

have to keep track of all the
factory methods by hand … so

what do we do?

Seems like we need some more
abstraction…

Abstract Factory Intent
• “Provide an interface for creating families of

related or dependent objects without specifying
their concrete classes.” 

– enforce Client to create sets of related
objects

– ensure Client doesn’t mix incompatible
objects 

1
5

Abstract Factory Example

16

• Programmers use GUI toolkits like Swing to
create and compose widgets
!

• Metro and Aero are two “desktop themes”
which give a GUI a different look and feel

!

• Want to provide a WidgetFactory which will
ensure that all GUI elements are created
according to a single theme

17

MetroAero

Abstract Factory Example

18

Note: as indicated, dotted line with arrow-head 	

shows “creates” relationship

Generic Abstract Factory Structure

19

Abstract Factory Participants

• Client
– uses only interfaces declared by AbstractFactory

and AbstractProduct classes
• AbstractFactory

– declares an interface for operations that create
abstract product objects

• ConcreteFactory
– implements the operations to create concrete

product objects
• AbstractProduct

– declares an interface for a type of product object
• ConcreteProduct

– corresponding to concrete factory
– implements the AbstractProduct interface

44

simple factory

factory method

abstract factory

http://vivekcek.wordpress.com/2013/03/17/simple-factory-vs-factory-method-vs-abstract-factory-by-example/

But I don’t want to make a bunch
of themey objects, I want to make
one complicated object over time

that needs a lot of other objects to
help!

Builder (Creational pattern)

Intent: Separate the construction of a complex object
from its representation so that the same construction
process can create different representations
!

•Use the Builder pattern when:

– the algorithm for creating a complex object should be
independent of the parts that make up the object and
how they are assembled

– the construction process must allow different
representations for the object that is constructed

Reference: Design Patterns, Gamma, et. al., Addison Wesley, 1995, pp 97-98

Builder Metaphor

UML Structure

Collaborations

Creational Patterns Summary

• Factory Method
– hide the details of sub-class specific

implementations from Client
• Abstract Factory

– enforce creation of related family objects
• Builder

– Multi-step object creation
– Separate the construction steps from the low-

level representation of the constructed object

Simple(r) interface to a class. Kind of an object container.

A link between two hierarchies, both of which you’re developing

A link to hide the fact that your object defers to a remote service

A link between two interfaces, at least one of which is out of your
control

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Takes a proxy, and adds to its behaviour (decorates it)

ki
nd

s
of

 w
ra

pp
er

s

sharing data with other objects to avoid duplication and to minimise
memory usage

a tree structure where leaves and branches can be treated the
same.

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

I want to be able to have a
hierarchical organisation, but don’t

want to write special code for
containers and leaf nodes…

Composite
• Name: Composite
• Intent: Compose objects into tree

structures. Lets clients treat
individual objects and compositions
uniformly.

• Participants & Structure:

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

I have an existing class that I want
to use, but I don’t want to modify

its source code…

Adapter

• Sometimes a toolkit or class library can
not be used because its interface is
incompatible with the interface
required by an application

• We can not change the library
interface, since we may not have its
source code

• Even if we did have the source code,
we probably should not change the
library for each domain-specific
application

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Metaphor: Electric Adapters

27

Adapter: Intent

• Convert the interface of a class into
another interface clients expect.

• Adapter lets classes work together that
couldn't otherwise because of
incompatible interfaces.

• Wrap an existing class with a
new interface.

• Also Known As Wrapper

Participants

• Target
– defines the domain-specific interface that Client

uses.

• Adapter
– adapts the interface Adaptee to the Target interface.

• Adaptee
– defines an existing interface that needs adapting.

• Client
– collaborates with objects conforming to the Target

interface.

Generic Adapter Structure

Desired Structure

Actual Structure“translation”

Collaboration

Desired Structure
Actual Structure

“translation”

Example Adaptee
Consider that we have a third party library that provides sorting
functionality through it's NumberSorter class.
!
This is our adaptee, a third party implementation of a number sorter
that deals with Lists, not arrays.
!
!
public class NumberSorter
{
 public void sort(List<Integer> numbers)
 {
 //sort numbers (details elided)
 …
 }
}

Example Target

Our Client deals with primitive arrays rather than
Lists.

We've provided a Sorter interface that expects the
client input. This is our target.
!

//this is our Target interface
public interface Sorter
{
 public int[] sort(int[] numbers);
}

Example Adapter
Finally, the SortListAdapter implements our target interface and
deals with our adaptee, NumberSorter
!
public class SortListAdapter implements Sorter
{
 NumberSorter sorter = new NumberSorter();
!
 @Override
 public int[] sort(int[] numbers)
 {
 //convert the array to a List (conversion detail elided)
 List<Integer> numberList = convertArrayToList(numbers);

 sorter.sort(numberList);
!
 //convert the list back to an array and return (conversion detail elided)
 int[] sortedArray = convertListToArray(numberList);
 return sortedArray;
 }
}

64

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

I have a thing, and I want to be
able to customise it on the fly. But

I don’t want to make a million
little classes each with the right

settings!

Decorator
Intent:
•Client-specified customization of features for
object
•Attach additional responsibilities to an object
dynamically (at run-time)

Client

composes concrete decorators

Participants

• Component
– the interface of a core object

• Concrete component
– an implementation of the component interface

• Decorator
– abstract class which wraps another Component

• Concrete Decorator
– an implementation of Decorator which adds new

behavior before/after core behavior
• through delegation

– optionally adds new methods/properties

!

You need to implement a point-of-sale system for a
coffee shop. The coffee shop has some basic
beverages, but customers can customize their
drinks by choosing what kind of milk they want, if
they want flavoured syrup, etc.

!

You could create a class for each drink, but there are
so many possible combinations that the number of
classes would quickly get out of hand.

Sample problem

22

Freeman, et al. Design Patterns, Head First

Solving this problem with inheritance

23

http://oreilly.com/catalog/hfdesignpat/chapter/ch03.pdf

Freeman, et al. Design Patterns, Head First

Solving this problem with Decorators

24

Solving this problem with Decorators

25

Freeman, et al. Head First Design Patterns

Solving this problem with Decorators

Then you chain those together

and then “get description” and “cost” are
computed down their subtrees

Solving this problem with Decorators

Behavioural

Interpreter

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Template

interpreting sentences in a grammar

a chain of objects, passing along (or not) command objects

an object that encloses a generic command. Provides a nice generic “execute” method
to fire the command whatever the underlying behaviour is.
allows a collection to be iterated over by adding “next()” “hasNext()” and other iteration-
friendly operations to their abstractions.

acts as a communication hub for multiple objects

saves state; allows rollback

lets an object watch other objects

strategy pattern but based on an object’s state

if you want to change behaviour of an object at runtime

iterate over a hierarchy to take both caller and callee type into account without a huge
loop+case statement.

defines the skeleton of a program, for others to fill in the details.

(we just did this one)

Behavioural

Interpreter

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Template

I want the behaviour of my system
to follow certain steps, but I want

clients to be able to define each of
those steps for themselves

Template Method

• Intent
– To define a skeleton algorithm by deferring

some steps to subclasses
– To allow the subclasses to redefine certain

steps
• Generic Structure AbstractClass

!
templateMethod()
hookMethod1()
hookMethod2()

 ConcreteClass
!
hookMethod1()
hookMethod2()

…
hookMethod1()
…
hookMethod2()
…

Metaphor: Templates in Word

43

Example

• Want to provide custom rendering of output
according to some visual pattern

• For real life example, consider example of web
page rendering: header, body, footer, etc…

!
Input: “JAVA”
!
Output 1:
!

JAVA

!
Output 2:
!
~~~~~~  
|JAVA|  
------ 44



Participants
• AbstractClass   

– defines abstract primitive operations that concrete subclasses 
define to implement steps of an algorithm 

– implements a template method defining the skeleton of an 
algorithm. The template method calls primitive operations as 
well as operations defined in AbstractClass or those of other 
objects. 

• ConcreteClass   
– implements the primitive operations to carry out 

subclass-specific steps of the algorithm
         AbstractClass !
templateMethod() 
hookMethod1() 
hookMethod2()

        ConcreteClass !
hookMethod1() 
hookMethod2()

… 
hookMethod1() 
… 
hookMethod2() 
…

Note: hookMethod sometimes called concreteMethod



Template Method Example
public abstract class StringRenderer {   
 //Template method 

public final void render(String str)  
{  

for(int i=0; i< str.length() + 2; i++) 

printTopCharacter(); 

System.out.println();    

printLeftCharacter(); 

System.out.print(str);  

printRightCharacter();    

System.out.println();  

for(int i=0; i < str.length() + 2; i++) 

printBottomCharacter();  

}   

 //”hooks” 
 protected abstract void printTopCharacter();    
 protected abstract void printLeftCharacter();    
 protected abstract void printRightCharacter();    
 protected abstract void printBottomCharacter();  
}

public class StarRenderer extends StringRenderer { 
 protected void printTopCharacter() { System.out.print(“*”); } 
 protected void printLeftCharacter() { System.out.print(“*”); } 
 protected void printRightCharacter() { System.out.print(“*”); } 
 protected void printBottomCharacter() { System.out.print(“*”); } 
}

abstract class

concrete class



Behavioural

Interpreter

Chain of 
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Template

I want my class to do something in 
particular, but I want the client to 
pick the strategy (or algorithm) it 

uses to do it



Strategy Pattern

Context of Use

execute()

Strategy

execute()

ConcreteStrategyA

execute()

ConcreteStrategyBdoesn’t have 
to be called 
“execute”



if user selects “fast” 
 Doer.do_it(new FastWay) 
if user selects “slow” 
 Doer.do_it (new SlowWay)

Strategy pattern 
lets clients 

override the 
algorithm 

(strategy) used 
for certain parts 
of the program’s 

computation 
while the code is 

running

class FastWay is_a Strategy: 
 method execute(): 
  //do it fast!

class SlowWay is_a Strategy: 
 method execute(): 
  //do it slowly!

class Doer: 
 method do_it(strategy): 
  strategy.execute()



To Sum Up
A lot of patterns are very related.  	

Many patterns use one another to 

facilitate their work.  Some are useful in 
very slightly different situations.  	


!

In industry, patterns are not dogma — 
patterns are advice.  	


But for our purposes, we aim to be 
able to distinguish them, and apply 

them correctly.


