
Reading List.!
Follow all the links listed explicitly on the slides and at least give them a read.
!
Some of the pages listed below, and some of the content linked from the slides have additional
topics that were never explicitly brought up in class (you can tell, because no content related to
them is present in the slides).
NOTE: Those “never covered” topics will not be present on the exam. If you are wondering
whether something is relevant, apply this test first: “is there any mention of it on the slides?”. If
you are still unsure, ask!!

Software Development Process!
http://en.wikipedia.org/wiki/Software_development_process (and Waterfall/Spiral/XP/Scrum
subpages)
!
Requirements/User Stories!
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Requirements_analysis
!
Software Design!
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Software_design
Is Design Dead: http://martinfowler.com/articles/designDead.html
Practical UML: http://edn.embarcadero.com/article/31863
(and google all the modularity principles we discussed in lecture - wikipedia pages exist for each,
as do Stack Overflow explanations)

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/User_story
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Single_responsibility_principle
http://en.wikipedia.org/wiki/Software_design
http://martinfowler.com/articles/designDead.html
http://edn.embarcadero.com/article/31863

Design — Review
same old concepts, but we’re doing them again

NOTE:
the order in which we do things here is not prescriptive —

it is necessarily meandering and iterative.

Let’s consider the problem from the sample midterm

You are creating a user interface that will
display the contents of the filesystem. The
filesystem contains folders and files, and
each folder may contain other folders or
files. When a change is made to the file
system (e.g., new file or folder created, file
or folder renamed, etc.) your user interface
needs to update to reflect the change. Your
user interface will be a window with a
TreeViewer control. The TreeViewer control
will display all of the files and folders.	

How would this look as a user story?
You are creating a user interface that will display the contents of the filesystem. The filesystem contains
folders and files, and each folder may contain other folders or files. When a change is made to the file
system (e.g., new file or folder created, file or folder renamed, etc.) your user interface needs to update to
reflect the change. Your user interface will be a window with a TreeViewer control. The TreeViewer control will
display all of the files and folders.	

value statement: As someone who wants to keep track of their
hierarchy of folders and files, I want to be able to see a tree view
that updates whenever a change is made to the system
!
acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or

folder created, or file or folder renamed, etc)

I’m not necessarily going to use this user story again (I
might, and probably will if I’m using Scrum), but re-stating

the problem helps build my perspective.

I’ve noticed some detailed design stuff
… let’s capture that

value statement: !
As someone who uses folders hierarchically, I want
to be able to see a tree view that updates whenever
a change is made to the system so I can keep
track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder

hierarchy
- the view must update when a change is made to the file system

(new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “Is a” Window (so there’s such

thing as a window)
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and folders

You are creating a user interface that will display the contents of the filesystem. The
filesystem contains folders and files, and each folder may contain other folders or files.
When a change is made to the file system (e.g., new file or folder created, file or folder
renamed, etc.) your user interface needs to update to reflect the change.
Your user interface will be a window with a TreeViewer control. !
The TreeViewer control will display all of the files and folders.	

if I’m using Scrum, these might become tasks later?
Probably? Or will help me make some tasks?

Those things also give me some hints about
responsibilities of these things I’ve found

value statement: !
As someone who uses folders hierarchically, I want
to be able to see a tree view that updates whenever
a change is made to the system so I can keep
track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder

hierarchy
- the view must update when a change is made to the file system

(new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and

folders

You are creating a user interface that will display the contents of the filesystem. The
filesystem contains folders and files, and each folder may contain other folders or files.
When a change is made to the file system (e.g., new file or folder created, file or folder
renamed, etc.) your user interface needs to update to reflect the change.
Your user interface will be a window with a TreeViewer control. !
The TreeViewer control will display all of the files and folders.	

Responsibilities we identify:!
- The TreeViewer control displays

files and folders
- The UserInterface window houses

(and, probably passes information
to?) the TreeViewer

You are creating a user interface that will display the contents of the filesystem. The
filesystem contains folders and files, and each folder may contain other folders or files.
When a change is made to the file system (e.g., new file or folder created, file or folder
renamed, etc.) your user interface needs to update to reflect the change.
Your user interface will be a window with a TreeViewer control.
The TreeViewer control will display all of the files and folders.	

Well I’ve eked out all I can from those last lines
Now let’s revisit the next sentence and see if we can find entities and

value statement: !
As someone who uses folders hierarchically, I want to be able to
see a tree view that updates whenever a change is made to the
system so I can keep track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or folder

created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and

folders

Responsibilities we identified before:!
- The TreeViewer control displays files and

folders
- The UserInterface window houses (and,

probably passes information to?) the
TreeViewer

New stuff we see in Sentence 1:!
- There’s a UI (we knew that already)
- There’s a filesystem (that’s new!)
- and the UI displays the contents of

the filesystem (corroborates our
theory from before about the UI
more or less using the TreeViewer)

This is getting messy. Let’s rewrite what we know

Thing What we know about it

User Interface displays contents of the filesystem (probably using the TreeView control)
is-a Window, has-a TreeView Control (that does the display)

Window that acts like a window? need to think about this…

Tree Viewer Control displays contents of the filesystem
Filesystem there is one!

Folders can have files or other folders, can be renamed
Files have … stuff in them. who cares?

1. You are creating a user interface that will display the contents of the filesystem.
2. The filesystem contains folders and files, and each folder may contain other folders or files.
3. When a change is made to the file system (e.g., new file or folder created, file or folder renamed, etc.) your user interface needs
to update to reflect the change.
4. Your user interface will be a window with a TreeViewer control.
5. The TreeViewer control will display all of the files and folders.	

value statement: !
As someone who uses folders hierarchically, I want to be able to see a tree view that updates whenever a change is made to the
system so I can keep track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and folders

Initially found responsibilities:!
- The TreeViewer control displays files and folders
- The UserInterface window houses (and, probably

passes information to?) the TreeViewer

Sentence 1!
- There’s a UI (we knew that already)
- There’s a filesystem (that’s new!)
- and the UI displays the contents of the filesystem (corroborates our theory from before

about the UI more or less using the TreeViewer)

great … let’s keep working through the sentences since we’re not done with those …

Now let’s add to that…

Thing What we know about it

User Interface displays contents of the filesystem (probably using the TreeView control)
is-a Window, has-a TreeView Control (that does the display)

Window that acts like a window? need to think about this…

Tree Viewer Control displays contents of the filesystem
Filesystem has a tree-like structure of folders and files

Folders can have files or other folders, can be renamed
Files have … stuff in them. who cares?

1. You are creating a user interface that will display the contents of the filesystem.
2. The filesystem contains folders and files, and each folder may contain other folders or files. !
3. When a change is made to the file system (e.g., new file or folder created, file or folder renamed, etc.) your user interface needs
to update to reflect the change.
4. Your user interface will be a window with a TreeViewer control.
5. The TreeViewer control will display all of the files and folders.	

value statement: !
As someone who uses folders hierarchically, I want to be able to see a tree view that updates whenever a change is made to the
system so I can keep track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and folders

Initially found responsibilities:!
- The TreeViewer control displays files and folders
- The UserInterface window houses (and, probably

passes information to?) the TreeViewer

Sentence 1!
- There’s a UI (we knew that already)
- There’s a filesystem (that’s new!)
- and the UI displays the contents of the filesystem (corroborates our theory from before

about the UI more or less using the TreeViewer)

we already knew that folders could have other folders,
but let’s keep track of the fact that the filesystem is a

hierarchical structure

Still adding…

Thing What we know about it

User Interface displays contents of the filesystem (probably using the TreeView control)
is-a Window, has-a TreeView Control (that does the display)

Window that acts like a window? need to think about this…

Tree Viewer Control displays contents of the filesystem
Input Listener marshals changes to the filesystem. Tells the filesystem. Tells the UI to update

Filesystem has a tree-like structure of folders and files
Folders can have files or other folders, can be renamed

Files have … stuff in them. who cares?

1. You are creating a user interface that will display the contents of the filesystem.
2. The filesystem contains folders and files, and each folder may contain other folders or files.
3. When a change is made to the file system (e.g., new file or folder created, file or folder renamed, etc.) your user interface
needs to update to reflect the change. !
4. Your user interface will be a window with a TreeViewer control.
5. The TreeViewer control will display all of the files and folders.	

value statement: !
As someone who uses folders hierarchically, I want to be able to see a tree view that updates whenever a change is made to the
system so I can keep track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and folders

Initially found responsibilities:!
- The TreeViewer control displays files and folders
- The UserInterface window houses (and, probably

passes information to?) the TreeViewer

Sentence 1!
- There’s a UI (we knew that already)
- There’s a filesystem (that’s new!)
- and the UI displays the contents of the filesystem (corroborates our theory from before

about the UI more or less using the TreeViewer)

who should do this? The TreeView Control only talks
about displaying, but maybe it could also cover

capturing user input. Then again maybe we should split
that up we could make an InputListener. Let’s do that

for now, we can merge again later if we want to.

Oh - done with that description

Thing What we know about it

User Interface displays contents of the filesystem (probably using the TreeView control)
is-a Window, has-a TreeView Control (that does the display)

Window that acts like a window? need to think about this…

Tree Viewer Control displays contents of the filesystem
Input Listener marshals changes to the filesystem. Tells the filesystem. Tells the UI to update

Filesystem has a tree-like structure of folders and files
Folders can have files or other folders, can be renamed

Files have … stuff in them. who cares?

1. You are creating a user interface that will display the contents of the filesystem.
2. The filesystem contains folders and files, and each folder may contain other folders or files.
3. When a change is made to the file system (e.g., new file or folder created, file or folder renamed, etc.) your user interface needs
to update to reflect the change.
4. Your user interface will be a window with a TreeViewer control.
5. The TreeViewer control will display all of the files and folders.	

value statement: !
As someone who uses folders hierarchically, I want to be able to see a tree view that updates whenever a change is made to the
system so I can keep track of my hierarchy of folders and files

acceptance criteria:!
- the folders must be able to contain both folders and files
- the view must be organised in tree format reflecting the folder hierarchy
- the view must update when a change is made to the file system (new file or folder created, or file or folder renamed, etc)

things we learn for free — we need to:!
- make a User Interface that “is a” window
- make a TreeViewer control
- put the TreeViewer control into the User Interface
- The Tree Viewer Control will display all the files and folders

Initially found responsibilities:!
- The TreeViewer control displays files and folders
- The UserInterface window houses (and, probably

passes information to?) the TreeViewer

Sentence 1!
- There’s a UI (we knew that already)
- There’s a filesystem (that’s new!)
- and the UI displays the contents of the filesystem (corroborates our theory from before

about the UI more or less using the TreeViewer)

we’ve already done these!

What about that user story?

Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree
Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes to the filesystem.
Tells the filesystem. Tells the UI to

update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

1. You are creating a user interface that will display the contents of the filesystem.
2. The filesystem contains folders and files, and each folder may contain other folders or files.
3. When a change is made to the file system (e.g., new file or folder created, file or folder renamed, etc.) your user interface needs to update to reflect the change.
4. Your user interface will be a window with a TreeViewer control.
5. The TreeViewer control will display all of the files and folders.	

value statement: !
As someone who uses folders
hierarchically, I want to be able to see a
tree view that updates whenever a
change is made to the system so I can
keep track of my hierarchy of folders and
files

acceptance criteria:!
- the folders must be able to contain both folders

and files
- the view must be organised in tree format

reflecting the folder hierarchy!
- the view must update when a change is made

to the file system (new file or folder created, or
file or folder renamed, etc)

we had added some specification in translating to the
user story, but it works in well, so let’s keep it.

mainly we’ve got everything.

Okaaaaay, let’s make a sketch?
Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes to the filesystem.
Tells the filesystem. Tells the UI to

update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

User Interface

Tree Viewer Control

Input Listener

Window

Filesystem

Folder

File

Things are almost never plural, so I changed Folders to
Folder and Files to File

Let’s look for easy to find aggregations, associations and
generalisations

Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure how)
to the filesystem. Tells the filesystem.

Tells the UI to update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

is-a

has-a

has-a

Stare at that for a bit
… ooh

Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure how)
to the filesystem. Tells the filesystem.

Tells the UI to update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

This reminds me of composite from 210. It’s a bit different. Should I change it? Later?

Okay … make more connections
Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure how)
to the filesystem. Tells the

filesystem. Tells the UI to update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

pretty abstract …
but may as well
stick it on the

diagram

tells
to

update

tells
to

update

Re-draw for layout…
Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure how)
to the filesystem. Tells the filesystem.

Tells the UI to update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who cares?

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

InputListener

Filesystem

Folder File

Add some verbs for responsibilities
Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to
think about this…

Tree
Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure
how) to the filesystem. Tells the

filesystem. Tells the UI to update

Filesyste
m

has a tree-like structure of
folders and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who
cares?

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

InputListener

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

listens for changes

tells the filesystem to updatetells the view to update

Stare at that for a bit….
Thing What we know about it

User
Interface

displays contents of the filesystem
(probably using the TreeView control)
is-a Window, has-a TreeView Control

(that does the display)

Window that acts like a window? need to
think about this…

Tree
Viewer
Control

displays contents of the
filesystem as a tree

Input
Listener

marshals changes (still not sure
how) to the filesystem. Tells the

filesystem. Tells the UI to update

Filesyste
m

has a tree-like structure of
folders and files

Folders can have files or other folders,
can be renamed

Files have … stuff in them. who
cares?

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

InputListener

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

listens for changes

tells the filesystem to updatetells the view to update

oh no! listener
also updates …
That’s two BIG
responsibilities.

Stare at that for a bit….
Thing What we know about it

User
Interface

displays contents of the filesystem (probably
using the TreeView control)

is-a Window, has-a TreeView Control (that
does the display)

Window that acts like a window? need to think
about this…

Tree Viewer
Control

displays contents of the filesystem as
a tree

Input
Listener

marshals changes (still not sure how) to
the filesystem. Tells the filesystem. Tells

the UI to update

Filesystem has a tree-like structure of folders
and files

Folders can have files or other folders, can
be renamed

Files have … stuff in them. who cares?

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

InputListener

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

listens for changes

tells the filesystem to updatetells the view to update
oh no! Listener
also updates …
That’s two BIG
responsibilities.

and are we even sure it should talk
to the big UI class? Maybe it should

talk directly to the TVC?!

Let’s split Listener
into Listener and Updater

and now the updater only
does one thing. Yay!

COHESION! !
SINGLE RESPONSIBILITY!

the InputListener is still not
completely settled, but it probably
gets INPUT FROM THE USER, so it
belongs up here in the UI somehow

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

Updater

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

tells the filesystem to updatetells the view to update

InputListener
listens for changes

tells
about

update

Huh. That’s nice…somewhat layered.

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

Updater

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

tells the filesystem to updatetells the view to update

InputListener
listens for changes

tells
about

update

UI on top

some logic in the
middle

data on the
bottom

MOST user
triggered systems

end up looking
something like this.

The law of Demeter looks somewhat
happy (so far), and coupling looks low

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

Updater

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

tells the filesystem to updatetells the view to update

InputListener
listens for changes

tells
about

update

no arrows from UI
straight to the
File System

each class is
behaviourally

connected to just
one thing!

And containment
connections are also

minimal

Okay …. so …. what about …
Information hiding?

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

Updater

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

tells the filesystem to updatetells the view to update

InputListener
listens for changes

tells
about

update

but but but
what about
information

hiding?
How do we
get that?

We need to drill
deeper to take that
into consideration.
Let’s take a closer
look at Updater.

But what about Information Hiding?

Updater

public stuff
(interface)

private stuff
(implementation)

handleNewUpdate()
updateView()
updateFilesystem()

Updater

But what about Information Hiding?

public stuff
(interface)

private stuff
(implementation)

If everything is up
here, we have a

very bad iceberg!!

Let’s move some stuff around!

and no one should be
calling these directly

anyway!

+ handleNewUpdate()

- updateView()
- updateFilesystem()

Updater

self.updateView()
self.updateFileSystem

But what about Information Hiding?

+ public stuff
(interface)

- private stuff
(implementation)

this is a lot less
tippy

+ means public
- means private

And we can see the information hiding
in a sequence diagram

InputListener Updater Filesystem TreeViewControl

update
FS()

handleNew
Update()

update()

update
TVC()

update()

Nice! Next we would keep going, and make public/private splits for each class

Questions!
+ handleNewUpdate()

- updateView()
- updateFilesystem()

Updater

self.updateView()
self.updateFileSystem

tells
to

update

tells
to

update

User Interface

Window

TreeViewControl

Updater

Filesystem

Folder File

display tree view using TVC

displays FS as a tree

does windowy stuff

can be
renamed

can be
renamed

can add/remove files

can add/remove
folders

tells the filesystem to updatetells the view to update

InputListener
listens for changes

tells
about

update

InputListener Updater Filesystem TreeViewControl

update
FS()

handleNew
Update()

update()

update
TVC()

update()

