
1

CPSC 310 – Software Engineering 
 

 Design: UML Review  
 

Short review assuming background from CPSC 210

Reading

Optional, but a very good resource about design	

http://courses.cs.washington.edu/courses/
cse403/07sp/assignments/Chapter5-Design.pdf

2

3

By the end of this unit, you will be able to:	

!
■Describe the context (goals and constraints) of the activity of
software design and explain why it’s important	

■Describe the kinds of information we must capture in a software
design	

■Understand the use of diagrams in software development (e.g. in
what situations would different diagrams be useful)	

■Create a design for a given system and specify it in correct UML
class/sequence diagram syntax	

■Describe a process for developing a design

Learning Goals

4

Requirements Design Code Test

Where does it
fit in the
process?

5

Requirements

Code

DESIGN
-Architectural
- Detailed

Design to Bridge the Gap

6

■ Facilitates communication	

■ Eases system understanding	

■ Eases implementation	

■ Helps discover problems early	

■ Increases product quality	

■ Reduces maintenance costs	

■ Facilitates product upgrade

Why Design?

7

Cost of not planning…

8

Another example of poor planning

9

“Treat design as a wicked, sloppy, heuristic
process. Don’t settle for the first design that
occurs to you. Collaborate. Strive for
simplicity. Prototype when you need to.
Iterate, iterate and iterate again. You’ll be
happy with your designs.”	

!
McConnell, Steve. Code Complete. Ch. 5

How to approach Design?

10

1. Architectural design	

• Determining which sub-systems you need (e.g., web server, DB…)	

• Discussed more in CPSC 410	

2. Detailed design	

• Looking at the statics and dynamics of your system (classes;

sequences)

Two common phases of Software Design

11

■ The architecture of a system describes its gross
structure:	

• Main components and their behaviour 	
 	

(system level, sub-systems)	

• Connections between the components / communication
(rough idea)	

!
■ Architectural Styles: data-flow, client/server,…	

!

■ Tools: UML, whiteboard, paper

Architectural Design

12

Web Browser

Web
Application

Server
DataWeb Browser

Web
Service

s

Web Architecture (Client / Server Style)

13

■ Concerned with programming concepts	

• Classes, Packages	

• Files	

• Communication protocols	

• Synchronization	

• …	

■ Mid-level design 	

• class diagrams	

■ Low-level design 	

• sequence diagrams

Detailed Design

■ Diagrams are a communication tool	

• End product is important, but discussion just as

important	

■ Quality of communication = Quality of design	

• Hence, quality of end product	

■ Tip for efficient communication:	

• Start light-weight and flexible	

• Then move on to details and more focused	

■ In terms of diagrams:	

• Start with draft, hand-written diagrams that can

change 	

• Towards the end, clean-up and make more

readable	

• Use a mutually understood language (a

standard: UML)

Diagrams

15

16

!
■Used to describe the relationships between classes
(and/or packages) in the system	

!
■UML: Unified Modeling Language (not only class diagrams)	

!
■Main elements of UML class diagrams	

• Classes	

• Relationships	

• Generalization	

• Association	

• Aggregation

Class Diagrams

17

!
!
!
!

■ Class name (Italics means abstract)	

■ Attributes (fields)	

Name : Type
■ Operations (methods)	

(parameters) : ReturnType
■ Can also be used for interfaces (without fields)

Class Diagrams: the Class

18

!
!
!
!
!
!

Used for:	

• Inheritance	

• Interface implementation

Class Diagrams: Generalization

19

!
!
!
!
!

■ Bi-directional	

• Both classes are aware of each other	

■ Role	

• Usually maps to a field name	

■ Multiplicity	

• Indicates how many instances can be linked (i.e. a list of…)

Class Diagrams: Association

20

!
!
!
!

■ Only one class knows of the other	

■ Role	

• Only in one direction	

■ Multiplicity	

• sometimes shown only on one end (BankAccount doesn’t

know report)

Class Diagrams:  
Uni-directional Association

21

■ An advanced type of association	

■ The contained object is part of the container	

■ Two types:	

• Aggregation: children can outlive parent	

!
!
!

• Composition: children’s life depends on parent

Class Diagrams: Aggregation

22

■ Group classes together

Class Diagrams: Packages

23

■ Used to describe sequences of invocations
between the objects that comprise the system	

• Focus less on type of messages, more on the
sequence in which they are received	

!
■ Elements of UML sequence diagrams:	

• Lifelines	

• Messages

Sequence Diagrams

24

!
!
!
!
!

■ Roles or object instances	

■ Participate in the sequence being modeled

Sequence Diagrams: Lifeline

25

!
!
!
!
!

■ Includes method name	

■ A box in the receiver’s lifeline indicates activation (object’s

method is on the stack)	

■ Full arrow: synchronous (blocking)	

■ Optionally: information returned

Ti
m
e

Sequence Diagrams: Messages

25

26From: http://www.ibm.com/developerworks/rational/library/3101.html

Sequence diagram for conditionals

26

http://www.ibm.com/developerworks/rational/library/3101.html

27

Sequence diagram
when some actions are

inside an if/else
!
!

Loops are similar - put
the actions inside a box

labeled “loop”

From: http://www.ibm.com/developerworks/rational/library/3101.html27

http://www.ibm.com/developerworks/rational/library/3101.html

Exercise
1. How many facts can you list from this diagram?	

2. What questions do you have as you look at this diagram?

28

Conclusion

29

• UML diagrams used to focus on specific details of
software structure	

• Not intended for mocking-up every detail	

!

• A good example where UML shines is 	

 Design Patterns	

• Reusable templates of design applicable across
multiple projects	

