
CPSC 310 – Software Engineering 
 

Requirements Gathering and Analysis

2

Overview
• Introduction	

• Requirement types	

• Requirements activities	

• Elicitation	

• Analysis	

• Specification	

• Validation

Learning Goals
By the end of this unit, you will be able to:	

•Explain why it’s important to elicit and specify requirements correctly	

•Specify or critique a set of requirements for a project	

•Explain advantages and disadvantages of using specific requirement
elicitation techniques	

•Given a project description, recommend elicitation techniques and
stakeholders involved	

•Given a particular system, create a comprehensive use case diagram
and use cases or comprehensive user stories	

•Describe challenges when eliciting and specifying requirements	

•Explain why the way we elicit and specify requirements depends on
the software process

What are requirements?

• Requirements define:	

• What the system must do	

• But not how it should do it (this is design)	

!
• In practice, it is difficult to draw a clear line

between what and how

Why do we need
requirements?

• Understand what is required of the software	

• Communicate this understanding precisely to all

development parties	

• Control production to ensure that system meets

specs

Why do we need requirements?

Business needs	

• Cost estimation	

• Budgeting	

• Scheduling project	

Technical needs	

• Software design	

• Software testing	

Communication needs	

• Documentation and training manuals

Requirements are important

“The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the detailed
technical requirements, including all the interfaces to
people, to machines, and to other software systems. No
other part of the work so cripples the resulting
system if done wrong. No other part of the system is
more difficult to rectify later.”	

!
Brooks, F. No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, 20 (4), April 1987. pp. 10–19.

The telephone effect

What the
customer was
billed

How the business
consultant described

it

How the project
was documented

Even more…

Classifying requirements

• Old approach: “functional” vs. “non-
functional”	

• Better approach: constraints, attributes and
functions.

11

Requirements types

Martin Glinz, On Non-Functional Requirements, Intl Conf. on Req. Engineering, Delhi, 2007

Discussion question
“I need the car to accelerate to 50 miles per hour in 10s
or less” 	

What type of requirement is this?	

A. A functional requirement.	

B. A legal constraint.	

C. A performance requirement.	

D. A quality requirement.	

E. A and C.

Requirements Activities

• Elicitation	

• Analysis	

• Specification	

• Validation (for sturdy processes)

Elicitation

We can gather information from existing system
documentation, specifications for similar systems
and stakeholders.	

!

Elicitation from
stakeholders

We need to consider all the different types of
stakeholders as they will all have different
knowledge of the system.	

!

Stakeholder exercise
List all of the stakeholders

that you can for a bank
ATM.

example from Sommerville’s Software Engineering 8

Elicitation is challenging
• Stakeholders have different needs, which may be in

opposition,	

• for example	

• User wants a usable system	

• Customer wants a low-cost system	

• Regulators want a system that is easy to audit	

!

• Stakeholders may not know exactly what they
want/need or may find it hard to articulate	

!

• Stakeholders have implicit knowledge of the
domain; you have to understand the requirements
they describe, possibly with domain-specific terms

Elicitation Techniques
• Questionnaire	

• Interviews	

• Brainstorm	

• Focus groups	

• Mock-ups & prototyping	

• Ethnographic analysis	

• Document study	

• …

When a system already exists…

• Document study 	

• Read the current documentation	

• Ethnographic analysis	

• Questionnaires	

• Interviews

Interviews

Key point is to pick the right people	

• Remember: there are many different stakeholders	

Users are expert in their domain, not in SE	

• May not know how their needs translate in software	

Interview in person	

• Not a survey

Context-free questions

• Can be used regardless of the project	

• About the nature of the project	

• About the environment	

• To understand the user profile	

• Examples:	

• How is success measured?	

• Who is the user?	

• What problems do you encounter?

22

Open-ended questions

• Encourages a full, meaningful answer	

• Uses the subject’s own knowledge	

• Good to get a general idea

Closed questions

• Have a short answer	

• Yes/No, or	

• A small number of words	

• Good to get a more specific idea or
confirmation

Interviews: Have a plan!
• Future questions often depend on previous

answer(s)	

• But you should have a template	

• List of context-free questions	

• A few high-level open-ended questions	

• A clear idea of what you want to know	

• Ask the general questions first, then the
specific questions later	

• Make sure you ask clear questions (why is this
important?)

Interview template
• Establish customer and user profile	

• Name, responsibility, individual measure of success,
elements that go against success	

• Assess the problem	

• Identify problems without good solutions, cause of

problem, current solution, desired solution	

• Understand the user environment	

• User background, education, computer literacy	

• Recap for understanding	

• Repeat the problem in your own words, ask for feedback,
clarification, additions

Class exercise: Example of an
interview

• Mom calls up complaining about having too
many recipe cards, can’t find recipe, can’t plan
shopping…	

!

• She paid for university, so… you agree to
make a recipe system

Class exercise

• Who would you interview?	

• What questions would you ask?	

(Remember to start general and then get more

specific)	

!
Now, trade with the group next to you and see if

you can make any suggestions about
important questions that they are missing.

Interviews – pros and cons
Advantages:	

•Possible to ask clarification or follow up questions	

•Rich collection of information (opinions, feelings, goals, hard facts,
…)	

!
Drawbacks:	

•Interviewing is a difficult skill to master	

•Can be time-consuming	

•Difficult for people to self-report	

• Mis-remember details	

• Forget implicit details	

•Misunderstandings due to lack of domain knowledge

Ethnographic Analysis

• The analyst immerses himself/herself in the work
environment and observes	

!

• Work is often richer/more complex than
suggested (why?)	

!

• Discovery by observation and analysis	

• Workers are not asked to explain what they

do (why not?)

Ethnographic analysis,
Example

• Controllers often put aircrafts onto potentially conflicting
flight paths with the intention to correct them later.	

• Existing system raises an audible warning when conflict
possible.	

• Controllers turned the buzzer off, because they were
annoyed by the constant “spurious” warnings.	

!
Sommerville et al.

When designing a new air control traffic system,
observation of the current system led to:

Ethnographic analysis – pros and
cons Advantages:	

•See how people actually work (can be different to what they self-
report or task manual describes it)	

!
Drawbacks:	

•Can be time-consuming	

•People might work differently when being watched	

•May miss events that only occur rarely	

•Difficult to understand everything that people do from just
watching them	

Questionnaires
• Good for large groups	

• Good using a specific and fixed list of questions	

• Not good as the only elicitation technique	

• One-way communication tool	

• Suffer from time-lag (cannot adjust to answers)	

• Selection bias	

• Example:	

• Survey of currently used features	

• Reasons for not using specific features

When is elicitation
completed?

• When all requirements are elicited?	

• When a large portion of them are elicited?	

!
• The “Undiscovered Ruin” problem	

• Try asking an archaeologist: “How many
undiscovered ruins are there?”	

!

• Scope the problem to solve, find some ruins,
have the stakeholder buy into the requirements

• Analyze the results of elicitation	

• Are the answers consistent?	

• Identify trouble spots	

• Identify boundaries	

• Identify most important requirements	

• Possibly iterate over elicitation again	

• Could need to have stakeholders negotiate

Analysis

What is the most important feature to you?	

!

Non-conflicting: OK	

!
Contradiction indicates an issue	

• How should you resolve a conflict?

Analysis Example

When using sturdy
processes:	

!
■ Standard SRS	

■ Use cases	

■ Use case diagrams

Specification
When using Scrum:	

!
■ Product Backlog	

■ User stories	

Introduction	

• Purpose, Scope, Glossary, References, Overview	

!

Overall Description	

• Product perspective, Product functions, User characteristics,

General constraints, Assumptions and dependencies	

!
Specific Requirements	

• System Environment, Functional Requirements, Use Cases,
Non-functional Requirements	

!
(These must be understandable by all stakeholders)

IEEE Standard 830

• A description of the possible sequences of
interactions between a system and its
external actors, related to a particular
goal.	

• Many use cases for an entire system	

• Does not constitute the entire specification	

• Usually included as part of an SRS

Use Case

• Brief use case	

• A few sentences summarizing the use case	

• Casual use case	

• One or two paragraphs of text, informal	

• Fully-dressed use case	

• A formal document on a detailed template	

• The most common meaning

Use Case

!
!
!
!
!
!
!

Cockburn, A. Writing Effective Use Cases. Addison-Wesley

Casual Use Case

Fully-dressed Use Case (1)

42

Fully-dressed Use Case (3)

• Show packaging and decomposition of use cases	

• Not their content	

• Each ellipse is a use case	

• Only top-level services should be shown	

• Not the internal behavior	

• Actors can be other systems	

• The system (black outline) can be an actor in other

use case diagrams	

• are not enough by themselves	

• Must individually document use cases

Use case diagrams

45

User stories in Agile Dev.
• a ~3 sentence description of what a software feature

should do	

!

• written in the customer’s language 	

• often on an index card	

!
• should only provide enough detail to make a low-risk

time estimate (a few days)	

• Typically take Role-Goal-Benefit form:	

• “As a <ROLE>, I want to <GOAL> in order to <BENEFIT>”	

• As a student, I need to login to Piazza in order to finish the assignment

Examples of User Stories:	

• As a user, I want to search for contacts so I can
message them.	

• As a customer, I want to search for product items so I
can buy them.	

• As an employer, I want to post a job on the website so
people can apply for it.	

!
NOT User Stories:	

• Implement contact list view ContactListView.java	

• Define the product table database schema	

• Automate the job posting algorithm

User Stories

Product Backlog Item also	

!

•specifies acceptance or completion criteria
that defines what is meant for this feature to be DONE	

!

•provides estimate of the required effort (story
points)	

!
•INVEST (for a good user story):	

•Independent, Negotiable, Valuable to users or
customers, Estimable, Small, Testable

As a company, I can use my credit card so I can pay for
job postings.	

!
•Note: Accept Visa, MasterCard, American Express. Consider Discover.	

!

•Test: (on the back of the story index card)	

•Test with Visa, MasterCard and American Express (pass)	

•Test with Diner’s Club (fail)	

•Test with good, bad and missing card ID numbers.	

•Test with expired cards.	

•Test with over $100 and under $100.

Example – User Story

• As a Creator, I want to upload a video from my
local machine so that any users can view it.	

!
• Note: …	

• Test:	

• Click the “Upload” button.	

• Specify a video file to upload. 	

• Check that .flv, .mov, .mp4, .avi, and .mpg extensions are supported.	

• Check that other filetypes aren’t able to be uploaded.	

• Check that files larger than 100MB results in an error.	

• Check that movies longer than 10 mins result in an error.	

• Click “Upload Video”.	

• Check that progress is displayed in real time.

Example – User Story & Test

What Makes a Good Story

Independent	

Negotiable	

Valuable to Users or Purchasers	

Estimable	

Small	

Testable

Independent

Little dependence between stories	

Keeps development flexible	

Makes estimation easier

Negotiable

• Details are negotiated between developers and
users	

• Cards become reminders of what has been
negotiated (especially tests)

Valuable to Purchasers or Users

Customer:	

• Purchaser: person who pays for the software	

	

An administrator can determine how many people used the
software in the last week.	

• User: person who uses the software	

	

A user can search for people by profile attributes	

Makes sure customer can estimate value of a story	

Not intended to be valuable only to the developers	

• The backend database will be MySQL (no value to user;
just restricts your options)

Estimable

A developer should be able to estimate how long a
story should take to complete	

Helps in planning	

Problems	

• Lack of domain knowledge ! ask customer	

• Lack of technical knowledge ! brush up on
tech.	

• Story is too big ! break it up

Small
Stories should be “just the right size”	

Rule-of-thumb: half a day to several days to implement	

Too big:	

• Estimate inaccurate + no value delivered until story is
complete	

• Compound ! Break up	

Too small:	

• Writing down the story may take longer than implementing it!	

• Combine (staple)	

Testable

The story should have a test that goes with it to
demonstrate that the story is implemented	

Two types	

• Automated	

	

 e.g. => JUnit test	

• Manual	

	

 e.g. => An untrained user should be able to
complete the steps in less than two minutes

User Stories Exercise

• In groups of 2	

• Write 2-4 user stories for Amazon	

• Include 3 acceptance criteria for each	

• Prioritize the user stories 1-4	

• Give an hour estimate for implementation	

• Additionally,	

• Add a one or two sentence description of a change to the requirements

which may cause the implementation to need modification

Validation (for an SRS)

A good requirement specification must be	

• Correct	

• Complete	

• Unambiguous	

• Consistent	

• Ranked for importance and stability	

• Modifiable	

• Traceable	

!
Lauesen, S. Software Requirements. Addison-Wesley. 2002.

Inspection

Most common errors:	

• Omission: A requirement is missing	

• Inconsistency: Conflicting requirements	

• Incorrect facts	

• Ambiguity	

The primary tool of validation is inspection	

• Should include various stakeholders	

• SRS author, client, designer, end-user, etc.

Validation checklist

1. Do requirements exhibit a clear distinction between function
and data?	

2. Do requirements define all the information to be displayed to
the users?	

3. Do requirements address system and user responses to error
conditions?	

4. Is each requirement stated clearly, concisely and unambiguously?	

5. Is each requirement testable?	

6. Are there ambiguous or implied requirements?	

7. Are there conflicting requirements?	

8. Are there area not addressed in the SRS that need to be?	

9. Are performance requirements stated?

62

https://help.rallydev.com/writing-great-user-story

