
Lecture 2 — Software Processes
CPSC310 — Software Engineering

Learning Goals

Why do software projects fail?

• Unrealistic project goals
• Inaccurate estimates of needed resources
• Unmanaged risks
• Poor communication
• … so many reasons!!!

When things go wrong…

detailed report:
http://calleam.com/WTPF/wp-content/uploads/articles/DIABaggage.pdf

Denver Baggage (mis)Handling

http://calleam.com/WTPF/wp-content/uploads/articles/DIABaggage.pdf

Denver Baggage (mis)Handling

Underestimation of complexity. Complex architecture.
Changes in requirements. Underestimation of schedule and budget.

Dismissal of advice from experts. Failure to build in backup or
recovery process to handle situations in which part of the system failed.

The tendency of the system to enjoy eating people’s baggage.

summary: http://calleam.com/WTPF/?page_id=2086

http://calleam.com/WTPF/?page_id=2086

The Beginning…
risk flagged; ignored.

scale changed

risks flagged; ignored

hasty contract

requirements change
requirements change

guru dies

…The End
requirements change

delays

technical challenges

more delays

BAE blames the user

BAE fined for overtime

done! but badly
scrapped

manual system used instead

So what happened?
• bad planning: They left it late! The software production started only 17

months before the scheduled opening
• In Munich, engineers spent two years testing a similar but much smaller system. And even that system is

not glitch free (nothing ever is - but at least it’s 24/7 operational)

• physical problems: Most buildings were built before the baggage system
was designed, meaning the baggage system had to adapt to an architecture
that wasn’t a good fit (sharp turns, narrow corridors)

• change of management: Death of the driving force of the project (you’d
think this was atypical, but gurus often leave a company mid-way through a
project, leaving the project somewhat stranded if planning isn’t good)

• accepting changing requirements: alterations to baggage sizes, types,
paths, etc — and the contractor said a firm “yes” to all these changes!

• lack of experience: this was the first time BAE had built a system like this.
But for some reason they didn’t choose to ask for outside advice from the
Munich baggage system engineers who might have provided insights and
helped mitigate risk.

Software Project Risks
• 6 dimensions of risks:

• USER: resistance to change; conflicts between them; negative
attitudes towards the project; lack of commitment; lack of
cooperation

• REQUIREMENTS: continually changing; inadequately identified;
unclear; incorrect

• PROJECT COMPLEXITY: new technology; high technical
complexity; immature technology; first use of technology

• PLANNING & CONTROL: poor process oversight; inadequate
estimation resources; poor planning; unclear milestones;
inexperienced pm’s; ineffective communication

• TEAM: lack of experience; lack of training; lack of specialised skill
• ORGANIZATIONAL ENVIRONMENT: change of management during

the project; unstable organisation; ongoing restructuring

http://www.iaeng.org/publication/IMECS2011/IMECS2011_pp732-737.pdf

Projects need a good plan

Software Process

• Processes have descriptions that discuss
• Products (the outcome of a process activity)
• Stakeholders (people who care about the outcome)

• (managers, developers, customers, testers)

what are some major types of
software customers?

Software process
• Many different software process
• All include:

• requirements elicitation
• architectural design
• detailed design
• implementation
• integration
• testing the goal for each of these activities is to:

- mark out a clear set of steps
- produce tangible item(s)
- allow for review of work
- specify actions to perform next

Is Process Worth It?
http://www.stevemcconnell.com/articles/art09.htm

“When a project has paid too little
early attention to the processes it will

use, by the end of a project
developers feel they are spending all

of their time in meetings and
correcting defects and little or no

time extending the software.”

“During the first few weeks of the
project, the process-oriented team will

seem less productive than the
process-phobic team… By the end of
the project, the process-oriented team
will be operating at a high-speed hum,
with little thrashing, and performing its
processes with little conscious effort.”

Process Phobic Team Process-Oriented Team

Software Process Models

Some models are better for
some types of projects than
others. Often models are
combined to build a tailored
process for building a certain
type of product.

Project leads need to be
able to choose and tailor a
model and assess risk
Developers need to
understand processes and
work within them

Waterfall Model

AKA: Big Design Up Front

(this picture looks old,
because this process is old!)
Royce, 1970
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

��
��������

������

�	����

�����

����������

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

Waterfall Model
AKA: Big Design Up Front

Benefits:

Waterfall Model
AKA: Big Design Up Front

Drawbacks:

Spiral Model
��
	�������

�����
���

������

�������
�����

Ultimate

Reqt's

Spec

�������

�������
����

�����
��
������

���
�����

�������

��
��
��
��

����

�������
��	

talk to customer

features to add

feedback on current version

risks/problems identified
($$$)
(time needed)

Boehm B, "A Spiral Model of Software Development and Enhancement", !

ACM SIGSOFT Software Engineering Notes", "ACM", 11(4):14-24, August 1986	

Spiral Model

Benefits:!
Manages risk by repeated prototyping
Requirements changes incorporated
iteratively

Drawbacks:!
High administrative overhead
Can be overly conservative if you have
high confidence in the project outcome

Agile Models/Principles
���	��������

	
���
����
��������

������

	��������
�

�	
���

���	��	�	���
������
��	�

Application

�����	����
	��	���

Flavours of Agile…

	
���
����
��������

������

	��������
�

�	
���

���	��	�	���
������
��	�

eXtreme Programming

���	��������

communication
simplicity
feedback
courage

stand-up

meetings

Flavours of Agile…

	
���
����
��������

������

	��������
�

�	
���

���	��	�	���
������
��	�

��	
����
���
���	

���������	�
�������

Feature Driven Development (FDD)

Summary

More on Agile…!
We will be getting more into agile
principles and models in the next
lecture…

