
CS310 - REVIEW

Topics Software Process

Agile

Requirements

Modular Design

Design Patterns

Testing

Refactoring

UI Design

Basic Design

Quality

How these things relate
Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Software Process

describe benefits of using a software process

describe waterfall and spiral model including drawbacks

describe the importance of agile methods

Agile

Test-Driven Development (tests written first)

Scrum - sprints, backlogs ceremonies

describe the importance of agile methods

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Quality

Design Quality influences Code Quality
Quality is hard to measure, but there are many indicators
Mechanisms like code review, pair
programming, refactoring, improve quality

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Quality concerns span the lifecycle

ascertain scope and acceptability

specify ilities
enforce quality constraints

maintain code quality!
(do minimal, appropriate

design and ongoing
testing and maintenance) ensure compliance

Requirements

Why requirements are needed

How to elicit requirements

User stories, and how to write good ones (INVEST)

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

UI Design

Nielsen Principles of Design

Appropriate components for usage

Rapid/Lighweight Prototyping Approach & Usability Testing

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Basic Design

From CS210

UML Sequence Diagrams & Class Diagrams

Naming conventions and syntax

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Coding!

This was covered in labs, and earlier courses

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Refactoring

Now that you have code, it’s time to refactor!

Why refactor? When to refactor? When not to refactor?

Looked at code smells, and how they necessitate refactorings

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

We went through some code smells,
and some prescribed refactorings

emergent design

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Modular Design

strong cohesion versus loose coupling

information hiding; Liskov Substitution Principle; Open/Closed Principle; Law of Demeter

these are all principles that motivate refactorings

Pragmatic Programmer:
Eliminate Effects Between Unrelated Things –
design components that are:
self-contained,
independent,
and have a single, well-defined purpose

ultimately about localisation of reasoning; reduction of
scattering and tangling of concerns

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Design Patterns
Creational

Singleton

Factory

Abstract Factory

Builder

Prototype

Structural

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Behavioural

Interpreter

Chain of
Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

Template

we saw that certain
code smells (not quite
duplicate code) could

motivate use of a template
method pattern

a factory might be the result
of a refactoring where a class

has >1 responsibility

A typical motivation for the
use of design patterns is
detection of a code smell

Software
Process (2)

Agile (3)

Quality (9)

Requirements (4)

Modular Design (6)

Design Patterns (7)

Testing (8)

Refactoring (10)

UI Design (11)

Basic Design (5)

Testing

Types of Testing (Unit, Regression,
Integration, Acceptance)
Testing Tactics (Black Box, White Box)
Stopping Criteria (Equivalence classes,
Boundary Tests, Coverage)
Who should test software?

M
ock O

bjects

How to Study

• Re-read the slides and follow the links for clarification and
more context.

• Try to work on the sample systems to do examples of the
things we covered

• Ask questions on Piazza
• I will be holding virtual office hours on Sunday, at a

time TBA. You can queue up your question (I might
even get to it early!)

