Unit \#2: Priority Queues
 CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2: January-April 2017

Unit Outline

- Rooted Trees (Briefly)
- Priority Queue ADT
- Heaps
- Implementing a Priority Queue ADT
- Operations on a Heap
- Building a Heap via Heapify
- Analysis of Operations
- Brief Introduction to d-Heaps

Learning Goals

- Define terminology about trees.
- Provide examples of appropriate applications for priority queues and heaps.
- Manipulate data in heaps.
- Describe and apply the Heapify algorithm, and analyze its complexity.

Rooted Trees and Some Applications

- Family Trees
- Organization Charts
- Classification Trees
- What kind of flower is this?
- Is this mushroom poisonous?
- File Directory Structure
- Folders and Subfolders in Windows
- Directories and Subdirectories in UNIX
- Non-Recursive Call Graphs
- Indexes in Database Systems

Tree Terminology: Examples
root: A
leaf: DEFIJ... N
child of _A_BC
parent of _H_G
sibling: J K
ancestor of N : HGCA
descendent of C_G : GIJK... N
subtree of \qquad : G and all descendent

struct Node \{ string data; Node *left, *right; \}

Tree Terminology Reference

"edges" or "arcs"
root: the single node with no parent
leaf: a node with no children
child: a node pointed to by me
parent: the node that points to me
sibling: another child of my parent

ancestor: my parent or my parent's ancestor
descendent: my child or my child's descendent
subtree: a node and its descendents

More Tree Terminology

depth: number of edges on path from root to node depth of H ? 3

More Tree Terminology

height: number of edges on longest path from a given node to its furthest descendent; or, when speaking of the whole tree: number of edges on longest path from root to leaf
height of tree? $=$ height of root $=4$
height of G ? 2

More Tree Terminology

(downward) degree: number of children of a given node degree of B ?

Highest degree here? 5

Questions for next page (slide 10): Is the tree above ...

Binary?	no
d-ary?	yes, d $=5$
Full?	no
Complete?	no
Nearly complete?	no

One More Tree-Terminology Slide

binary: Each node has degree at most 2 .
d-ary: The degree is at most d.

full: Each internal (non-leaf) node has the maximum number of children (2 in the case of a binary tree).
complete: It has as many nodes as possible for its height (i.e., each row is filled in).
nearly complete: Each row, except possibly the last one, is filled in, and all nodes in the last row are as far left as possible. (Warning: Some authors like Koffman/Wolfgang call this a complete tree. We'll stick with nearly complete.)

One More Tree-Terminology Slide

binary: Each node has degree at most 2 .
n : \# of nodes in a binary tree of height h
$h+1 \leq n \leq 2^{\wedge}(h+1)-1$

e.g. with $h=3$:
$n \leq 2^{\wedge}(3+1)-1$, so $n \leq 15$
Max \# nodes
also $3+1 \leq n$, so $4 \leq n$. Thus, $4 \leq n \leq 15$
complete: It has as many nodes as possible for its height (i.e., each row is filled in). $n=2^{\wedge}(h+1)-1$

$$
\text { e.g. with } h=3: \quad n=15
$$

nearly complete: Each row, except possibly the last one, is filled in, and all nodes in the last row are as far left as possible.
(Warning: Some authors like Koffman/Wolfgang call this a complete tree. We'll stick with nearly complete.)
$2^{\wedge} h \leq n \leq 2^{\wedge}(h+1)-1 \quad$ If a nearly complete tree has n nodes, what is the h ?
e.g. with $h=3: \quad 8 \leq n \leq 15$

$$
\angle 1-1+2
$$

$$
h \leq \lg n<(h+1)
$$

$h=$ floor $(\lg n)$

Example: Finding the Longest Undirected Path in a Tree

Does such a path always include the root?

Longest Path

An algorithm to find the longest undirected path in a tree:

LongestPath $(r)=0$
LongestPath $(r)=1$
Lif has no children r has one child
LongestPath $(r)=\operatorname{MAX}\left[\begin{array}{l}\text { MAX [Height(c) + Height(d)] }+2 \\ \text { where } c \neq d \text { are children of } r \\ \text { MAX [LongestPath(c)] } \\ \text { where c is a child of } r\end{array}\right]$

Back to Queues

- Applications
- Ordering jobs/processes on a CPU
- Simulating events
- Picking the next search site
- But we don't necessarily want FIFO. You can choose your order, according to some carefully thought-out priority. Maybe:
- Shorter jobs should go first.
- Earliest (simulated time) events should go first.
- Most promising sites should be searched first.

Priority Queue ADT

Data

- Priority Queue Operations
- create
- destroy
- insert
- deleteMin
- is_empty

- Priority Queue Property (in a minimum priority queue): For two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y when performing a deleteMin operation.

Applications of a Priority Queue

- Hold jobs for a printer in order of length.
- Store packets on network routers in order of urgency.
- Simulate events.
- Select symbols for compression.
- Sort numbers.
- Anything greedy: In this case, an algorithm makes the "locally best choice" (not necessarily the overall best choice) at each step.

Priority Queue Data Structures

Consider two data structures: Array and Linked List

- Unsorted List
- insert time: $\quad \Theta(1) \quad$ Add new item to Array or Linked List
- deleteMin time: $\Theta(n) \quad$ Find item in the unsorted Array or Linked List
- Sorted List
- insert time:

- deleteMin time: $\Theta(1) \quad$ Remove 1st item in the sorted Array or Linked List

Binary Heap Priority Queue Data Structure

Heap-Order Property: parent's key \leq children's key (we often call this a minimum heap)

- minimum is always at the top

Structure Property: "nearly complete tree"

- depth is always $\mathrm{O}(\lg \mathrm{n})$: See proof on slide 10
- next open location is always known

WARNING: This has no similarity to the memory "heap" we talk about when using $C++$'s new operator.

```
struct Node {
    string data;
    int priority;
    Node *left, *right, *parent;
}
```

In illustrations usually:
\diamond Only priorities are shown
\diamond The "data" for each node is omitted to avoid clutter

Nifty Storage Trick: use an array to represent a heap

Navigation using indices:

- left_child $(i)=2 i+1$
- right_child $(i)=2 i+2$
- parent $(i)=\lfloor(\mathrm{i}-1) / 2\rfloor=\lceil\mathrm{i} / 2\rceil-1$
- root $=0$

- next free position $=\mathrm{n}$

No gaps if "nearly
complete"

	0	1	2	3	4	5	6	7	8	9	10	11	12
Heap:	2	4	5	7	6	10	8	13	9	12	14	11	

deleteMin

Invariants violated! It's no longer a "nearly complete" binary tree.

Swap (Heapify) Down

Move last element to the root, and then swap it down to its proper position. Heap-order

Max \#swaps needed: height of the heap H

deleteMin Code

int deleteMin() \{ assert(!isEmpty()); int returnVal = Heap[0]; Heap [0] = Heap [n-1]; n--; swapDown(0); return returnVal; \}

Runtime: Another approach:

\#swapDown $\in \mathrm{O}(\mathrm{H})=\mathrm{O}(\lg \mathrm{n})$

Example recursive calls:
swapDown(0); swapDown(1); swapDown(3); swapDown(7); swapDown(15);
void swapDown(int i) \{

```
        int s = i;
```

 int left \(=\) i \(* 2+1 ;\)
 int right \(=\) left +1 ;
 if (left < n \&\&
 Heap[left] < Heap[s])
 \(\mathrm{s}=\) left; checks heap
 if (right < n \&\& boundary
 Heap [right] < Heap [s])
 s = right;
 if (s != i) \{false at leafs
 int tmp = Heap[i]; swap
 Heap[i] = Heap[s]; nodes i and
 Heap[s] = tmp;
 swapDown(s);
 \(s>2 * i\)
 \}
 \}

Inserting a New Node

Invariant violated! Child has smaller key than parent.

Swap (Heapify) Up

Begin by putting the new element last, then swap it up to its proper position.

insert Code

```
void insert(int x) {
    assert(!isFull());
    Heap[n] = x;
    n++;
    swapUp(n-1);
}
```

Runtime:

\#swapUp $\in \mathrm{O}(\mathrm{H})=\mathrm{O}(\lg \mathrm{n})$

```
void swapUp(int i) {
        if( i == 0 ) return;
        int p = (i - 1)/2;
        if( Heap[i] < Heap[p] ) {
            int tmp = Heap[i];
            Heap[i] = Heap[p];
            Heap[p] = tmp;
            swapUp(p);
                                    p<i/ 2
    }
}
```

Example recursive calls:

```
swapUp(11);
swapUp(5);
swapUp(2);
swapUp(0);
```

\#swapUp $\in \mathrm{O}(\lg \mathrm{n})$

Heapify: Build a Heap from an Array

1. Start with the input array.

12	5	11	3	10	6	9	4	8	1	7	2

First consider a rather naive approach using "insert" (from slide 24):
Starting from an empty heap, insert input array elements into the heap one by one.

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \\
& \text { insert(i); } \\
& \\
& \mathrm{T}(\mathrm{n})=\log 1+\log 2+\log 3+\ldots+\log n \\
&=\log (1 \times 2 \times 3 \times \ldots \times n) \\
&=\log (n!) \\
& \in \Theta(n \log n) \quad \text { as we saw in lec01 notes }
\end{aligned}
$$

Can we do better? Yes!
Consider the entire input array as an invalid heap which violates the heap-order property
Then, "fix" the heap-order property one by one, but starting from the end and going up (see next slide ...)

Heapify: Build a Heap from an Array

1. Start with the input array.

12	5	11	3	10	6	9	4	8	1	7	2

Start from the first node with some children, ie. the parent of last node: $\mathrm{i}=12 / 2-1=5$

Invariant violated!

Each Leaf is already a proper heap because it has no children
2. Fix the heap-order property, starting from the bottom, and going up. Use swapDown.

$$
\begin{aligned}
& \operatorname{for}(i=n / 2-1 ; i>=0 ; i--) \\
& \\
& \operatorname{swapDown}(i) ;
\end{aligned}
$$

Thus, this would also work: for ($\mathrm{i}=\mathrm{n} ; \mathrm{i}>=0$; i --) swapDown(i);
But it makes wasteful calls to swapDown (2 times more calls)

Heapify Example...

\triangle a triangle denotes a valid heap

Heapify Example

swapDown is called ≤ 4 times on heaps of height $\mathrm{H}-2$

swapDown is called once on a heap of height H

Heapify Runtime

swapDown on a heap of height h takes at most \qquad steps.

$$
H=\lfloor\lg n\rfloor
$$

swapDown is called	once	on heap of height	H
	≤ 2 times	on heap of height	$H-1$
	≤ 4 times	on heap of height	$H-2$

≤ 4 times on heap of height $H-2$
$: \leq 2^{\mathrm{H}-\mathrm{h}}$ times on heap of height h
$\leq 2^{H-1}$ times on heap of height 1
Total \# steps $\leq \sum_{h=1}^{H} h 2^{H-h}=2^{H} \sum_{h=1}^{H} h / 2^{h} \leq 2^{H+1}=O(n)$ <2 (see next slide)

$$
\begin{aligned}
& \sum_{h=1}^{H} h / 2^{h}<1 / 2+2 / 4+3 / 8+4 / 16+\ldots \\
& h=1 \quad=2 \\
& 2 S=1+2 / 2+3 / 4+4 / 8+\ldots \\
& S=1 / 2+2 / 4+3 / 8+\ldots \\
& 2 S-S=1+1 / 2+1 / 4+1 / 8+\ldots \\
& S=1+1 / 2+1 / 4+1 / 8+\ldots \\
& S=2
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{S} & =1+1 / 2+1 / 4+1 / 8+\ldots \\
\mathrm{S} / 2 & =1 / 2+1 / 4+1 / 8+1 / 16+\ldots \\
\mathrm{S}-\mathrm{S} / 2 & =1 \\
\mathrm{~S} / 2 & =1 \\
\mathrm{~S} & =2
\end{aligned}
$$

Heapify Runtime: Charging Scheme

\diamond When two nodes are swapped, $\$ 1$ is charged
\diamond Each edge only has $\$ 1$
\diamond Thus, there can only be one swap for each edge
\diamond But still the worst case

Worst case:

\diamond heap is a "complete" tree (i.e., all rows are filled in)
\diamond all leafs have high priorities (i.e., have small values in a minimum heap)
tree can be heapified! (see next slide)
Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one step of swapDown. By induction, we can show that when swapDown is called on a node v, both children of v have a path (the rightmost path) to a leaf that is uncharged. The edges on the left child's rightmost path plus the edge to the left child pay for the steps of swapDown at v. The edges on the right child's rightmost path plus the edge to the right child form the uncharged path available to the parent of v.

Heapify Runtime: Charging Scheme

Thus this second proof has the same results as the first proof that we saw on slide 28.

Thinking about Binary Heaps

Observations

- Finding a child/parent index is a multiply/divide by two (i.e. 2i or $\mathrm{i} / 2$) operation. left $=2 i+1, p=\lfloor(i-1) / 2\rfloor$
- Both deleteMin and the subsequent insert might access far-apart array locations. seperated by large gaps
- deleteMin accesses all children of visited nodes. swapDown
- insert accesses only the parent of visited nodes. swapUp
- insert is at least as common as deleteMin.

Generally true: you can delete something that has already been inserted
Realities But not necessarily: you may start with heapify and never insert before delete

- Division and multiplication by powers of two are fast.
- Far-apart array accesses can ruin cache performance.
- With large datasets, disk I/O dominates CPU time.
$i * 2==i \ll 1$
$i * 4==i \ll 2$
$i * 8==i \ll 3$
$i / 2==$
$i \gg 1$
$i / 4==$
$i \gg 2$
$i / 8==$
\cdots
\cdots

Solution: d-Heaps

These arearly complete d-ary trees (representable by an array) with a heap-order property.

A set of d children

1	3	7	2	4	8	5	12	11	10	6	9
0	1	2	3	4	5	6	7	8	9	10	11

Good choices for d :

- fit one set of children on a memory page/disk block
- fit one set of children in a cache line
- optimize performance based on ratio of inserts/deleteMins
- make d a power of two for efficiency

d-Heap Navigation

So all children: $\mathrm{d}^{*} \mathrm{i}+1$ through $\mathrm{d}{ }^{*} \mathrm{i}+\mathrm{d}$

- j th-child $(i)=\mathrm{d}^{*} \mathrm{i}+\mathrm{j}$
- parent $(i)=\lfloor(i-1) / \mathrm{d}\rfloor$
- root $=0$
- next free position $=\mathrm{n}$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10 & 6 & 9 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{array}
$$

