
Unit #2: Priority Queues
CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2: January-April 2017

Unit Outline

I Rooted Trees (Briefly)

I Priority Queue ADT

I Heaps

I Implementing a Priority Queue ADT
I Operations on a Heap
I Building a Heap via Heapify
I Analysis of Operations
I Brief Introduction to d-Heaps

2 / 32

Learning Goals

I Define terminology about trees.

I Provide examples of appropriate applications for priority
queues and heaps.

I Manipulate data in heaps.

I Describe and apply the Heapify algorithm, and analyze its
complexity.

3 / 32

Rooted Trees and Some Applications

I Family Trees

I Organization Charts

I Classification Trees

I What kind of flower is this?
I Is this mushroom poisonous?

I File Directory Structure

I Folders and Subfolders in Windows
I Directories and Subdirectories in UNIX

I Non-Recursive Call Graphs

I Indexes in Database Systems

4 / 32

root

Tree Terminology: Examples

H

MLKJ

D E

B

G

I

C

A

F

N

root:

leaf:

child of :

parent of :

sibling:

ancestor of :

descendent of :

subtree of :

5 / 32

A

D E F I J … N

 A B C

 H G

J K

N H G C A

C G H I J K … N

G G and all descendent

subtree of G

struct Node {
 string data;
 Node *left, *right;
}

Tree Terminology Reference

H

MLKJ

D E

B

G

I

C

A

F

N

root: the single node with no parent

leaf: a node with no children

child: a node pointed to by me

parent: the node that points to me

sibling: another child of my parent

ancestor: my parent or my parent’s ancestor

descendent: my child or my child’s descendent

subtree: a node and its descendents

6 / 32

“nodes” or “vertices”

“edges” or “arcs”

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

depth: number of edges on path from root to node

depth of H?

7 / 32

3

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

height: number of edges on longest path from a given node to its
furthest descendent; or, when speaking of the whole tree: number
of edges on longest path from root to leaf

height of tree?

height of G?

8 / 32

= height of root = 4

2

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

(downward) degree: number of children of a given node

degree of B?

9 / 32

Questions for next page (slide 10):
Is the tree above …
Binary? no
d-ary? yes, d = 5
Full? no
Complete? no
Nearly complete? no

3

Highest degree here? 5

One More Tree-Terminology Slide

LKJIH

D E

B

F G

C

A

binary: Each node has degree at most 2.

d-ary: The degree is at most d .

full: Each internal (non-leaf) node has the maximum number of
children (2 in the case of a binary tree).

complete: It has as many nodes as possible for its height (i.e.,
each row is filled in).

nearly complete: Each row, except possibly the last one, is filled
in, and all nodes in the last row are as far left as possible.
(Warning: Some authors like Ko↵man/Wolfgang call this a
complete tree. We’ll stick with nearly complete.)

10 / 32

Also a tree

One More Tree-Terminology Slide

LKJIH

D E

B

F G

C

A

binary: Each node has degree at most 2.

d-ary: The degree is at most d .

full: Each internal (non-leaf) node has the maximum number of
children (2 in the case of a binary tree).

complete: It has as many nodes as possible for its height (i.e.,
each row is filled in).

nearly complete: Each row, except possibly the last one, is filled
in, and all nodes in the last row are as far left as possible.
(Warning: Some authors like Ko↵man/Wolfgang call this a
complete tree. We’ll stick with nearly complete.)

10 / 32

n: # of nodes in a binary tree of height h

h + 1 ≤ n ≤ 2^(h+1) - 1

e.g. with h=3:
n ≤ 2^(3+1) - 1, so n ≤ 15
also 3+1 ≤ n, so 4 ≤ n. Thus, 4 ≤ n ≤ 15

n = 2^(h+1) - 1
e.g. with h=3: n = 15

2^h ≤ n ≤ 2^(h+1) - 1

e.g. with h=3: 8 ≤ n ≤ 15

1

2

4

8

Max # nodes
for each row

If a nearly complete tree has n nodes, what is the h?
2^h ≤ n < 2^(h+1)
h ≤ lg n < (h+1)
h = floor(lg n) (ie. the integer part of lg n)

Example: Finding the Longest Undirected Path in a Tree

H

MLKJ

D E

B

G

I

C

A

F

N

Does such a path always include the root?

11 / 32

Longest path IF the
red nodes are added.
It does not include
the root anymore.

Longest path, which includes the root

There are two
possibilities for
the longest
path in a tree.

Longest Path

r

An algorithm to find the longest undirected path in a tree:

12 / 32

Longest path (LP)
which includes root

Longest path (LP)
not including root

LongestPath(r) = MAX

 MAX [Height(c) + Height(d)] + 2
 where c ≠ d are children of r

 MAX [LongestPath(c)]
 where c is a child of r

LongestPath(r) = 0 if r has no children

add 2 edges

1 1

LongestPath(r) = 1 if r has one child

Back to Queues

I Applications
I Ordering jobs/processes on a CPU
I Simulating events
I Picking the next search site

I But we don’t necessarily want FIFO. You can choose your
order, according to some carefully thought-out priority.
Maybe:

I Shorter jobs should go first.
I Earliest (simulated time) events should go first.
I Most promising sites should be searched first.

13 / 32

Priority Queue ADT

ant 8

bee 2

cat 4

dog 14

emu 6

insert deleteMin

I Priority Queue Operations
I create
I destroy
I insert
I deleteMin
I is empty

I Priority Queue Property (in a minimum priority queue): For
two elements in the queue, x and y , if x has a lower priority
value than y , x will be deleted before y when performing a
deleteMin operation.

14 / 32

bee 2

Data

Priorities

Applications of a Priority Queue

I Hold jobs for a printer in order of length.

I Store packets on network routers in order of urgency.

I Simulate events.

I Select symbols for compression.

I Sort numbers.

I Anything greedy: In this case, an algorithm makes the “locally
best choice” (not necessarily the overall best choice) at each
step.

15 / 32

Priority Queue Data Structures

I Unsorted List

I insert time:

I deleteMin time:

I Sorted List

I insert time:

I deleteMin time:

16 / 32

Consider two data structures: Array and Linked List

Θ(1) Add new item to Array or Linked List

Θ(n) Find item in the unsorted Array or Linked List

Θ(1) Remove 1st item in the sorted Array or Linked List

Θ(log n) + Θ(n) = Θ(n)

Θ(n) + Θ(1) = Θ(n)

Array:

Linked List:

Find
position:

Insert at
position:

Θ(n)

Binary Heap Priority Queue Data Structure

111412913

7 6

4

10 8

5

2

Heap-Order Property: parent’s key children’s key (we often call
this a minimum heap)

I minimum is always at the top

Structure Property: “nearly complete tree”

I depth is always O(lg n)

I next open location is always known

WARNING: This has no similarity to the memory “heap” we talk
about when using C++’s new operator.

17 / 32

In illustrations usually:
◊ Only priorities are shown
◊ The “data” for each node is
 omitted to avoid clutter

: See proof on slide 10

struct Node {
 string data;
 int priority;
 Node *left, *right, *parent;
}

Nifty Storage Trick

111412913

7 6

4

10 8

5

2

0

1 2

3 4 5 6

7 8 9 10 11

Navigation using indices:

I left child(i) =

I right child(i) =

I parent(i) =

I root =

I next free position =

0 1 2 3 4 5 6 7 8 9 10 11 12
2 4 5 7 6 10 8 13 9 12 14 11

18 / 32

: use an array to represent a heap

No gaps if
“nearly
complete”

Heap:

2i + 1

2i + 2

⎣(i-1)/2⎦= ⎡i/2⎤- 1

0

n

size = n

deleteMin

111412913

7 6

4

10 8

5

2

111412913

7 6

4

10 8

5

2

Invariants violated! It’s no longer a “nearly complete” binary tree.

19 / 32

Swap (Heapify) Down

Move last element to the root, and then swap it down to its proper
position.

1412913

7 6

4

10 8

5

11

1412913

7 6

4

10 8

5

1412913

7

6

4

10 8

5

11

1412913

7

6

4

10 8

5

11

11

20 / 32

Stayed valid; it
wasn’t changed

Heap-order
property violated

Stayed valid; it
wasn’t changed

Max #swaps needed: height of the heap H

deleteMin Code

int deleteMin() {

assert(!isEmpty());

int returnVal = Heap[0];

Heap[0] = Heap[n-1];

n--;

swapDown(0);

return returnVal;

}

Runtime:

void swapDown(int i) {

int s = i;

int left = i * 2 + 1;

int right = left + 1;

if(left < n &&

Heap[left] < Heap[s])

s = left;

if(right < n &&

Heap[right] < Heap[s])

s = right;

if(s != i) {

int tmp = Heap[i];

Heap[i] = Heap[s];

Heap[s] = tmp;

swapDown(s);

}

}

21 / 32

Constant
time

s > 2*i

Example recursive
calls:

swapDown(0);
swapDown(1);
swapDown(3);
swapDown(7);
swapDown(15);

#swapDown ∈ O(lg n)

swap
nodes i and
s

false at leafs

checks heap
boundary

Another approach:

start

end

H

#swapDown ∈ O(H)=O(lg n)

Inserting a New Node

11

1412913

7

6

4

10 8

5

31412913

7

6

4

10 8

5

insert(3)

11

Invariant violated! Child has smaller key than parent.

22 / 32

Swap (Heapify) Up

Begin by putting the new element last, then swap it up to its
proper position.

1412913

7 10 8

5

1412913

7

4

10

8

5

1412913

7

6

4

10

85 11

1412913

7

6 4

8511

3

4

6

11

6

11 3

3

10

3

23 / 32

insert Code

void insert(int x) {

assert(!isFull());

Heap[n] = x;

n++;

swapUp(n-1);

}

void swapUp(int i) {

if(i == 0) return;

int p = (i - 1)/2;

if(Heap[i] < Heap[p]) {

int tmp = Heap[i];

Heap[i] = Heap[p];

Heap[p] = tmp;

swapUp(p);

}

}
Runtime:

24 / 32

Constant
time

Example recursive calls:

swapUp(11);
swapUp(5);
swapUp(2);
swapUp(0);

#swapUp ∈ O(lg n)

p < i / 2

#swapUp ∈ O(H) = O(lg n)

start

end

H

Heapify: Build a Heap from an Array

1. Start with the input array.
12 5 11 3 10 6 9 4 8 1 7 2

27184

3 10

5

6 9

11

12

Invariant violated!

0

1 2

3 4 5 6

7 8 9 10 11

2. Fix the heap-order property, starting from the bottom, and
going up. Use swapDown.

for(i = n/2 - 1; i >= 0; i--)

swapDown(i);

25 / 32

for(i = 0; i < n; i++)
 insert(i);

First consider a rather naive approach using “insert” (from slide 24):
Starting from an empty heap, insert input array elements into the heap one by one.

log i

T(n) = log 1 + log 2 + log 3 + … + log n
 = log (1 x 2 x 3 x … x n)
 = log (n!)
 ∈ Θ (n log n) as we saw in lec01 notes

Can we do better? Yes!

Consider the entire input array as an invalid heap which violates the heap-order property

Then, “fix” the heap-order property one by one, but starting from the end and going up
(see next slide …)

Heapify: Build a Heap from an Array

1. Start with the input array.
12 5 11 3 10 6 9 4 8 1 7 2

27184

3 10

5

6 9

11

12

Invariant violated!

0

1 2

3 4 5 6

7 8 9 10 11

2. Fix the heap-order property, starting from the bottom, and
going up. Use swapDown.

for(i = n/2 - 1; i >= 0; i--)

swapDown(i);

25 / 32

for(i = n; i >= 0; i--)
 swapDown(i);

Thus, this would also work:

But it makes wasteful calls to
swapDown (2 times more calls)

Each Leaf is already a
proper heap because
it has no children

Start from the first node
with some children, i.e.
the parent of last node:
i = 12/2 - 1 = 5

Heapify Example...

7184

3 10

5

6 9

11

12

2

7184

3 10

5

9

11

12

2 6

2

84

3

5

9

11

12

6

2

84

3

5

9

11

12

67

1

10 7

1

10

0

1 2

3 4 5 6

7 8 9 10 11

26 / 32

a triangle denotes a valid heap

Heapify Example

0

1 2

3 4 5 6

7 8 9 10 11

2

84

3

5

9

11

12

6

7

1

10

2

8

4

3

9

1112

6

7

5

10

1

2

84

3 9

11

12

6

7

5

10

1

27 / 32

H = 3

swapDown is called ≤ 2 times on heaps of height H-1

swapDown is called once on a heap of height H

h = H-2 = 1

h = H-1 = 2

swapDown is called ≤ 4 times on heaps of height H-2

Heapify Runtime

swapDown on a heap of height h takes at most steps.

2

8

4

3

9

1112

6

7

5

10

1

0

1 2

3 4 5 6

7 8 9 10 11

Let H be the height of the heap.

swapDown is called once on heap of height H
 2 times on heap of height H � 1
 4 times on heap of height H � 2
...
 2H�1 times on heap of height 1

Total # steps
PH

h=1 h2
H�h = 2H

PH
h=1 h/2

h 2H+1 = O(n)

28 / 32

h = H = 3

h = H-1 = 2

h = H-2 = 1

h

≤ 2 times on heap of height hH-h

< 2 (see next slide)

by heapify H =⎣lg n⎦

h / 2∑
h =1

H
< 1/2 + 2/4 + 3/8 + 4/16 + …h

2S = 1 + 2/2 + 3/4 + 4/8 + …
 S = 1/2 + 2/4 + 3/8 + …

 2S - S = 1 + 1/2 + 1/4 + 1/8 + …

S = 2

call it

S = 1 + 1/2 + 1/4 + 1/8 + …

S = 1 + 1/2 + 1/4 + 1/8 + …

because

S/2 = 1/2 + 1/4 + 1/8 + 1/16 + …
S - S/2 = 1

S/2 = 1
S = 2

= 2

S

Sobecause

Heapify Runtime: Charging Scheme

$ $

$ $ $ $

$$$$$$$$

Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one
step of swapDown. By induction, we can show that when
swapDown is called on a node v , both children of v have a path
(the rightmost path) to a leaf that is uncharged. The edges on the
left child’s rightmost path plus the edge to the left child pay for
the steps of swapDown at v . The edges on the right child’s
rightmost path plus the edge to the right child form the uncharged
path available to the parent of v .

29 / 32

Worst case:

◊ heap is a “complete” tree
(i.e., all rows are filled in)

◊ all leafs have high priorities
(i.e., have small values in a
minimum heap)

◊ When two nodes are
swapped, $1 is charged

◊ Each edge only has $1

◊ Thus, there can only be
one swap for each edge

◊ But still the worst case
tree can be heapified! (see next slide)

Heapify Runtime: Charging Scheme

$ $

$ $ $ $

$$$$$$$$

Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one
step of swapDown. By induction, we can show that when
swapDown is called on a node v , both children of v have a path
(the rightmost path) to a leaf that is uncharged. The edges on the
left child’s rightmost path plus the edge to the left child pay for
the steps of swapDown at v . The edges on the right child’s
rightmost path plus the edge to the right child form the uncharged
path available to the parent of v .

29 / 32

1st level to swapDown

2nd level to swapDown

3rd level to swapDown unspent $’s:
the right most path:
H = lg n

#swaps = (total $’s) - (unspent $’s)
#swaps = (#edges) - (H)
#swaps = (n - 1) - (lg n)
#swaps = n - 1 - lg n
#swaps ≤ n
#swaps ∈ O(n)

total $’s = #edges = n - 1

Thus this second proof has the same results
as the first proof that we saw on slide 28.

Thinking about Binary Heaps

Observations

I Finding a child/parent index is a multiply/divide by two
operation.

I Both deleteMin and the subsequent insert might access
far-apart array locations.

I deleteMin accesses all children of visited nodes.

I insert accesses only the parent of visited nodes.

I insert is at least as common as deleteMin.

Realities

I Division and multiplication by powers of two are fast.

I Far-apart array accesses can ruin cache performance.

I With large datasets, disk I/O dominates CPU time.

30 / 32

seperated by large gaps

left = 2i+1, p =⎣(i-1)/2⎦
(i.e. 2i or i/2)

recall that

i*2 == i<<1
i*4 == i<<2
i*8 == i<<3
i/2 == i>>1
i/4 == i>>2
i/8 == i>>3
…

swapDown

swapUp

Generally true: you can delete something that has already been inserted
But not necessarily: you may start with heapify and never insert before delete

Using bit shifts, which are fast; e.g.:

Solution: d -Heaps
These are complete d-ary trees (representable by an array) with a
heap-order property.

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2

3

0 1 2 3 4 5 6 7 8 9 10 11

Good choices for d :

I fit one set of children on a memory page/disk block

I fit one set of children in a cache line

I optimize performance based on ratio of inserts/deleteMins

I make d a power of two for e�ciency

31 / 32

A set of d children

^
nearly

d -Heap Navigation

I jth-child(i) =

I parent(i) =

I root =

I next free position =

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2

3

0 1 2 3 4 5 6 7 8 9 10 11

32 / 32

d*i + j

0

n

⎣(i-1)/d⎦

So all children: d*i + 1 through d*i + d

