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Unit Outline

I Brief Proof Review

I Algorithm Analysis: Counting the Number of Steps

I Asymptotic Notation

I Runtime Examples

I Problem Complexity

2 / 43



Learning Goals

I Given some code or an algorithm, write a formula that
measures the number of steps executed by the code, as a
function of the size of the input.

I Use asymptotic notation to simplify functions and to express
relations between functions.

I Know and compare the asymptotic bounds of common
functions.

I Understand why—and when—to use worst-case, best-case, or
average-case complexity measures.

I Give examples of tractable, intractable, and undecidable
problems.
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Review: Proof by ...

I Counterexample

I Show an example which does not fit with the theorem.
I Thus, the theorem is false.

I Contradiction
I Assume the opposite of the theorem.
I Derive a contradiction.
I Thus, the theorem is true.

I Induction
I Prove the theorem for a base case (e.g., n = 1).
I Assume that it is true for all n  k (for arbitrary k).
I Prove it for the next value (n = k + 1).
I Thus, the theorem is true.
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X is true for n=1
If X is true for n=k, then X is true for n=k+1
Therefore, 
X is true for n=1, 2, 3, 4, …

(e.g.,  n < n)



Example: Proof by Induction (Worked Example) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

Proof:
Let x1x2x3 . . . xn be the n decimal digits of x .
Let the sum of its decimal digits be

S(x) =
nX

i=1

xi

We’ll prove the stronger result:

S(x) mod 3 = x mod 3.

How do we use induction?
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Examples:

   x               S(x): sum of digits of x            Divisible by 3
_______________________________________________
      12                   3                                                √
      17                   8                                                -
    171                   9                                                √
12003                   6                                                √
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     “x is divisible by 3” means:
      x mod 3 = 0

      So we only need to show that:
      S(x) mod 3 = 0   iff   x mod 3 = 0

Above is “stronger results” because
we are showing more than needed!



Example: Proof by Induction (Worked Example) 2/4

Base Case:
Consider any number x with one (n = 1) digit (0-9).

S(x) =
nX

i=1

xi = x1 = x .

So, it’s trivially true that S(x) mod 3 = x mod 3 when n = 1.
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Example: Proof by Induction (Worked Example) 3/4

Inductive Hypothesis:
Assume for an arbitrary integer k > 0 that for any number x with
n  k digits:

S(x) mod 3 = x mod 3.

Inductive Step:
Consider a number x with n = k + 1 digits:

x = x1x2 . . . xkxk+1.

Let z be the number x1x2 . . . xk . It’s a k-digit number; so, the
inductive hypothesis applies:

S(z) mod 3 = z mod 3.
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Example:

x=876
k=2

z=87



Example: Proof by Induction (Worked Example) 4/4

Inductive Step (continued):

x mod 3 = (10z + xk+1) mod 3 (x = 10z + xk+1)

= (9z + z + xk+1) mod 3

= (z + xk+1) mod 3 (9z is divisible by 3)

= (S(z) + xk+1) mod 3 (inductive hypothesis)

= (x1 + x2 + · · ·+ xk + xk+1) mod 3

= S(x) mod 3

QED (quod erat demonstrandum: ”what was to be
demonstrated”)
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e.g.:
x = 876  = 10 · 87 + 6

Induction is used to prove the correctness and running time of 
algorithms that use loops or recursion

(6+2) mod 3 = 2 mod 3 = 2
e.g.

S(z) mod 3 = z mod 3
i.e.

Because we have proved both the Base Case and Inductive Step.



A Task to Solve and Analyze

Find a student’s name in a class given her student ID.

I Consider the data that you need to store.

I Consider the operation.

I Consider the possible data structures.

I Does it matter which data structure we use?

9 / 43

 id , name

but also probably needed:
“insert”
“delete”
…

• Two arrays: ids and names
• Array of key-value pairs: <id, name>
• List of key-value pairs: <id, name>
• Dictionary
• Map
• … 

“search”

Yes, because some are faster (more efficient) for this problem when it gets large enough 

How can we compare them?

0  1  2   3  …

names 

ids
0  1  2   3  …

It can be 
sorted on ids



E�ciency

Suppose we have two or more algorithms that each solve the same
problem.

I Some measure of e�ciency is needed to determine which
algorithm is ”better”.

I Complexity theory addresses the issue of how e�cient an
algorithm is.

I Suggest some qualities or metrics that we can measure, count,
or compare in order to determine the e�ciency of an
algorithm.
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We will see that the exact values for 
such qualities do not matter when 
using asymptotic notation (O, Θ, Ω, …)

e.g.: 
- milliseconds 
- number of operations to run
- number of lines of code to run
- amount of memory needed
- … 



Analysis of Algorithms

I The analysis of an algorithm can give insight into two
important considerations:

I How long the program runs (time complexity or runtime)
I How much memory it uses (space complexity)

I Analysis can provide insight into alternative algorithms.

I The input size is indicated by a non-negative integer n (but
sometimes there are multiple measures of an input’s size).

I Running time can be summarized—and represented—by a
real-valued function of n such as:

I T (n) = 4n + 5
I T (n) = 0.5n log n � 2n + 7
I T (n) = 2n + n3 + 3n
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E.g., (see slide 9)
n: number of students
T(n): time to find one student



Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond
(i.e., trillionth of a second: 10�12 s.). Here’s how long it would
take to run T (n) operations, where T (n) is a function of the input
size n (e.g., T (n) = log n):

n = 10

100 1,000 10,000 105 106 109

log n 1ps

2ps 3ps 4ps 5ps 6ps 9ps

n 10ps

100ps 1ns 10ns 100ns 1µs 1ms

n log n 10ps

200ps 3ns 40ns 500ns 6µs 9ms

n2 100ps

10ns 1µs 100µs 10ms 1s 1week

2n 1ns

1Es 10289s

nanosecond (ns) = one-billionth of a second

microsecond (µs) = one-millionth of a second
Exasecond (Es) = 32 billion years
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T(n)          n=
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T(n)          n=

“intractable”
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T(n)          n=

     Real life examples:

Human genome size:
n = 3 ⨉ 10^9 base pairs

Pine tree genome size:
n = 23 ⨉ 10^9 base pairs



Analyzing Code

// Linear Search

find(key, array):

for i = 0 to (length(array) - 1) do

if array[i] == key

return i

return -1

1) What’s the input size n?
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T(n):  # lines of code executed

Is checking for equality == expensive? 

n = size of the input “array”

Also, k = size of “key” (optional because we can assume all keys have max key size)

Thus, let’s assume that here == takes constant time



Analyzing Code

// Linear Search

find(key, array):

for i = 0 to (length(array) - 1) do

if array[i] == key

return i

return -1

2) Should we assume a worst-case, best-case, or average-case sce-
nario for running an input of size n?

13 / 43

Answer: worst-case 
because n does not tell us enough about the input.

For example, for an given array with size n:
— The key may be located at array[0]
— The key may not be in the array at all

Thus, the results of worst case analysis is meaningful for any given n — it cannot get worse than the worst case!

Rarely useful Sometimes useful



Analyzing Code

// Linear Search

find(key, array):

for i = 0 to (length(array) - 1) do

if array[i] == key

return i

return -1

3) How many lines are executed as a function of n in the worst-case?

T (n) =

Is lines the right unit?
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this line never runs

n = the size of “array”

this line runs n times

this line runs n times

this line runs 1 time

2n + 1

Maybe — Usually

It is often proportional to how much time the algorithm takes 
to run given the input size.



Analyzing Code

The number of lines executed in the worst-case is:

T (n) = 2n + 1

I Does the “1” matter?

I Does the “2” matter?
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As n gets bigger, 2n dominates 1.  So “no”

The time per line changes by constant factor:
— As technology changes
— between different computers

Usually useful to ignore the constant factors
So, “no”

How can we abstract from 
things that do not matter?
See next slide!



Big-O Notation

Assume that for every integer n, T (n) � 0 and f (n) � 0.

T (n) 2 O(f (n)) i↵ there are positive constants c and n0 such that

T (n)  cf (n) for all n � n0.

Meaning: “T (n) grows no faster than f (n)”
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set of functions

Example:

T(n) = 2n+1                 f(n) = n

Claim:    2n+1 ∈ O(n)

Proof:
2n+1 ≤ 3n      for  n ≥ 1
      1 ≤ n        for  n ≥ 1             (subtract 2n from both sides)
     which is true intuitively 

So, we found some c and n0 (c=3 and n0=1) for which the above definition holds.

Thus,      2n+1 ∈ O(n)     or      T(n) ∈ O(f(n))





Asymptotic Notation

I Big-O: T (n) 2 O(f (n)) i↵ there are positive constants c and
n0 such that T (n)  cf (n) for all n � n0.

I Big-Omega: T (n) 2 ⌦(f (n)) i↵ there are positive constants c
and n0 such that T (n) � cf (n) for all n � n0.

I Big-Theta: T (n) 2 ⇥(f (n)) i↵ T (n) 2 O(f (n)) and
T (n) 2 ⌦(f (n)).
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T(n)  “≥”  f(n)

T(n)  “≤”  f(n)

T(n)  “=”  f(n)

Exercise: show that
T(n) ∈ Ω(f(n))    ⟺    f(n) ∈ O(T(n))

Equivalent alternative definition for Θ:
T(n) ∈ Θ(f(n))  iff  there are positive constants c1, c2 and n0 
such that T(n) ≥ c1 f(n) and T(n) ≤ c2 f(n)  for all n ≥ n0.

Asymptotic notation helps 
us “compare” functions

i.e.: “T(n) grows slower or with the same rate as f(n)”

i.e.: “T(n) grows with the same rate as f(n)”

i.e.: “T(n) grows faster or with the same rate as f(n)”



Asymptotic Notation (cont.)

I Little-o: T (n) 2 o(f (n)) i↵ for any positive constant c , there
exists n0 such that T (n) < cf (n) for all n � n0.

I Little-omega: T (n) 2 !(f (n)) i↵ for any positive constant c ,
there exists n0 such that T (n) > cf (n) for all n � n0.
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i.e.: “T(n) grows strictly slower than f(n)”

i.e.: “T(n) grows strictly faster than f(n)”

T(n)  “<”  f(n)

T(n)  “>”  f(n)

Note that not all pairs of functions are related, for example:

n^(1+sin(n))   vs.   n    cannot be comparied

limit as n→∞,  T(n)/f(n) = 0

limit as n→∞,  T(n)/f(n) = ∞



Examples

10, 000n2 + 25n 2 ⇥(n2)

10�10n2 2 ⇥(n2)

n log n 2 O(n2)
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10,000 n^2 + 25 n ≤ 10,000 n^2 + 25 n^2    for n ≥ 1
                            ≤ 10,025 n^2                   for n ≥ 1

So c=10,025 and n0=1, and thus
10,000 n^2 + 25 n ∈ O(n^2)

10,000 n^2 + 25 n ≥ 10,000 n^2                   for n ≥ 1

So c=10,000 and n0=1, and thus
10,000 n^2 + 25 n ∈ Ω(n^2)

Thus:
10,000 n^2 + 25 n ∈ Θ(n^2)

Use c=10^-10 and n0=1   for both O(n^2) and Ω(n^2)    thus Θ(n^2)

 n log(n) ≤ c n^2     
    log(n) ≤ c n
                 How do we know if this always hold as n grows?

lim as n→∞,  log(n) / (c n)
                 consider their rate of growth (or derivatives)

lim as n→∞,  (1/n) / (c) = 0

So c=1 and n0=1,  n log(n) ∈ o(n^2)   (i.e. even little o)

Thus from now on 
you can always 
assume that
log(n) ≤ c n 
and 
log(n) ∈ o(n) 



Examples (cont.)

n log n 2 ⌦(n)

n3 + 4 2 o(n4)

n3 + 4 2 !(n2)
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lim as n→∞,  (n^3) / (n^4) = 0

lim as n→∞,  (n^3) / (n^2) = ∞

 n log(n) ≥ c n
    log(n) ≥ c

c=1 and n0=1



Analyzing Code

// Linear Search

find(key, array):

for i = 0 to (length(array) - 1) do

if array[i] == key

return i

return -1

4) How does T (n) = 2n + 1 behave asymptotically? What is the
appropriate order notation? (O, o, ⇥, ⌦, !?)
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2n + 1 ∈ O(n)  …   saying the algorithm is fast
2n + 1 ∈ Ω(n)  …   saying the algorithm is slow

2n + 1 ∈ Θ(n)

What we can say 
about best case:

T(n) ∈ Ω(1)



Asymptotically Smaller?

n3 + 2n2 versus 100n2 + 1000

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

n3
+ 2n2

100n2
+ 1000
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ignore lower terms: (2n^2)   and (1000)
ignore multiplicative constants: 100

n^3 + 2n^2 ∈ Ω(100n^2 + 1000)

for c=1
and n0 about 100, say 
n0=120

Dominates 
after some 
threshold



Asymptotically Smaller? (cont.)

n0.1 versus log2 n
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Asymptotically Smaller? (cont.)

n0.1 versus log2 n
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A ∈ Ω(B)

also B ∈ O(A)

for c=1

and n0 about 5e+17
or anything higher, e.g.

n0=6e+17

A B



Asymptotically Smaller? (cont.)

n + 100n0.1 versus 2n + 10 log2 n
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Asymptotically Smaller? (cont.)
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lower order terms can be ignored

A B

Here, you can always come up with some constant c 
to make cA asymptotically larger than B, or 
to make cB asymptotically larger than A.

A ∈ O(B)
A ∈ Ω(B)
A ∈ Θ(B)

thus



Typical Asymptotics

Tractable

I Constant: ⇥(1)

I Logarithmic: ⇥(log n) (logb n, log n
2 2 ⇥(log n))

I Poly-Log: ⇥(logkn) (logk n ⌘ (log n)k)

I Linear: ⇥(n)

I Log-Linear: ⇥(n log n)

I Superlinear: ⇥(n1+c) (c is a constant > 0)

I Quadratic: ⇥(n2)

I Cubic: ⇥(n3)

I Polynomial: ⇥(nk) (k is a constant)

Intractable

I Exponential: ⇥(cn) (c is a constant > 1)
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log  n  =  log  n  /  log  b

the base of log does not matter

sublinear

b aa



Sample Asymptotic Relations

I {1, log n, n0.9, n, 100n} ⇢ O(n)

I {n, n log n, n2, 2n} ⇢ ⌦(n)

I {n, 100n, n + log n} ⇢ ⇥(n)

I {1, log n, n0.9} ⇢ o(n)

I {n log n, n2, 2n} ⇢ !(n)
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Example functions belonging to



Analyzing Code

I Single operations: constant time

I Consecutive operations: sum of the operations’ times

I Conditionals: condition time plus the maximum (for
worst-case analysis) of the branch times

I Loops: sum of the loop body times

I Function call: time for the function

Above all, use common sense!

26 / 43

The sum also constant time 
IF all the operations take 
constant time

e.g. 
checking equality  i<=j
or adding values    i+=1;

(loop body time ⨉ #executed)



Runtime Example #1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1
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 i
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

j 1 2 3 4 5 6 7 8 9 10

1 ⨉ n ⨉ n

n is size of input array and T(n) is time to run

So,
T(n) = 1 ⨉ n ⨉ n = n^2

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

e.g., n=10, T(10) = 10 ⨉ 10 = 100 
T(n) = n^2, so also T(n) ≤ n^2
which means: 
T(n) ∈ Ω(n^2)

T(n) = n^2, so also T(n) ≥ n^2
which means: 
T(n) ∈ O(n^2)

Thus:
T(n) ∈ Θ(n^2)

The line  “sum = sum + 1”  takes 
some constant amount of time to run.
The number of times it is executed is 
proportional to total of time needed.

10
10
10
10
10
10
10
10
10
10

T(10) =100



Runtime Example #2

i = 1

while i < n do

for j = i to n do

sum = sum + 1

i++
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          T(n) ∈ O(n^2)

 i
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

j 1 2 3 4 5 6 7 8 9 10

e.g., with n=10

10
 9
 8
 7
6
5
4

 3
2
1

T(10) = 55

1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1
    1 1 1 1 1 1 1 1
      1 1 1 1 1 1 1
        1 1 1 1 1 1
          1 1 1 1 1
            1 1 1 1
              1 1 1
                1 1
                  1

∑
j=i

n

1 =  n - j + 1

n - j + 1∑
i=1

n-1

T(n) = n + (n-1) +    …     + 3  +  2

T(n) =

T(n) = 2 +       3  +   …  + (n-1) + n

reverse 
order

T(n)+T(n) = (n+2) +(n+2)+   …   + (n-2) + (n-2)

add

(n-1) times

T(n)+T(n) = (n+2) (n-1)

          T(n) = (n+2) (n-1) / 2

          T(n) = n^2/2 + n/2 - 1

          T(n) ≤ n^2/2 + n^2/2 - 1
          T(n) ≤ n^2

          T(n) = n^2/2 + n/2 - 1

          T(n) ≥ n^2/4  for n > 1

          T(n) ∈ Ω(n^2)

 T(n) ∈ Θ(n^2)



Runtime Example #3

i = 1

while i < n do

for j = 1 to i do

sum = sum + 1

i += i
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 i
 1
 2
 3
 4
 5
 6
 7
 8
 9
10

j 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1
  1 1 1 1 1 1 1 1 1

      1 1 1 1 1 1 1

              1 1 1

10
 9

 

 7

 3

e.g., with n=10,  i=1, 2, 4, 8

T(10) = 29

 i = 1, 2, 4, 8, 16, …

⨉ i

i = 2^0, 2^1, 2^2, 2^3, … , 2^k
such that    2^k  <  n  ≤ 2^(k+1)

T(n) =∑ i

T(n) = 2^k +  …  2^2 + 2^1 + 2^0

in reversed order

T(n) = (1 1 1 … 1 1 1)

T(n) = (0 1 1 1 … 1 1 1)
2

2

number represented in base 2

add a leading 0 (no effect)

T(n)+1 = (1 0 0 0 … 0 0 0)

2
add 1 to both sides

T(n) = (1 0 0 0 … 0 0 0)    - 1
2

T(n) = 2^(k+1)  - 1
because digit 1 is a 
bit at position k+1

we had above that
n  ≤ 2^(k+1)T(n) ≥ n  - 1

T(n) ∈ Ω(n)

T(n) = 2^(k+1)  - 1
T(n) = 2 ⨉ 2^k  - 1

T(n) < 2 ⨉ n  - 1 we had above that
 2^k  <  n

T(n) ∈ O(n)

T(n) ∈ Θ(n)



Runtime Example #4

int max(A, n):

if( n == 1 ) return A[0]

return larger of A[n-1] and max(A, n-1)

Recursion almost always yields a recurrence relation:

T (1)  b

T (n)  c + T (n � 1) if n > 1

Solving the recurrence:

T (n)  c + c + T (n � 2) (substitution)

 c + c + c + T (n � 3) (substitution)

 kc + T (n � k) (extrapolating k > 0)

= (n � 1)c + T (1) (for k = n � 1)

 (n � 1)c + b

T (n) 2
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O(n)

n n-1

b = 1 line

c = 2 lines

Usually these exact values for 
constants b and c do not matter 
because they will be ignored for 
asymptotic relations.

because 
T(n – 1) ≤ c + T(n – 2)

T(n – 2) ≤ c + T(n – 3)
means “guessing”

base case

Set k such that:
n – k = 1
to obtain T(1)

base case

base case



Runtime Example #5: Mergesort
Mergesort algorithm:
Split list in half, sort first half, sort second half, merge together
Recurrence relation:

T (1)  b

T (n)  2T (n/2) + cn if n > 1

Solving recurrence:

T (n)  2T (n/2) + cn

 2(2T (n/4) + cn/2) + cn (substitution)

= 4T (n/4) + 2cn

 4(2T (n/8) + cn/4) + 2cn (substitution)

= 8T (n/8) + 3cn

 2kT (n/2k) + kcn (extrapolating k > 0)

= nT (1) + cn lg n (for 2k = n)

T (n) 2
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O(n lg n)
≤ nb + cn lg n

Takes 
constan
t time, 
so 
ignored

T(n/2) T(n/2) c n   for some constant c

T(n/2) ≤ 2T(n/4) + cn/2

T(n/4) ≤ 2T(n/8) + cn/4

n/2   = 1k k = lg n



Runtime Example #6: Fibonacci (page 1 of 2)

Recursive Fibonacci:

int fib(n)

if( n == 0 or n == 1 ) return n

return fib(n-1) + fib(n-2)

Recurrence Relation: (lower bound)

T (0) � b

T (1) � b

T (n) � T (n � 1) + T (n � 2) + c if n > 1

Claim:
T (n) � b'n�1

where ' = (1 +
p
5)/2

Note: '2 = '+ 1

32 / 43



Runtime Example #6: Fibonacci (page 2 of 2)

Claim:
T (n) � b'n�1

Proof: (by induction on n)
Base Case: T (0) � b > b'�1 and T (1) � b = b'0.
Inductive Hypothesis: Assume T (n) � b'n�1 for all n  k .
Inductive Step: Show that it’s true for n = k + 1.

T (n) � T (n � 1) + T (n � 2) + c

� b'n�2 + b'n�3 + c (by inductive hypothesis)

= b'n�3('+ 1) + c

= b'n�3'2 + c

� b'n�1

T (n) 2
Why? The same recursive call is made numerous times.
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Example #7: Learning from Analysis

To avoid recursive calls:

I Store base case values in a table.
I Before calculating the value for n:

I Check if the value for n is in the table.
I If so, return it.
I If not, calculate it and store it in the table.

This strategy is called memoization and is closely related to
dynamic programming.

How much time does this version take?
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As each value is computed, store them in an array.

fib n

fib n-2fib n-1

fib n-2 fib n-3

fib n-3 fib n-4

fib 3

fib 2 fib 1

…

just look up 
values from 
previous 
calculations

Θ(n) because we compute all values from 1 to n only once.

Θ(n)

Θ(1)



Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence
of characters that appears, in order, in both strings.

Example:

A = search me B = insane method

A longest common subsequence is “same”; another is “seme”.

Applications of LCS:
DNA sequencing, revision control systems, diff, ...
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Example: subsequences of “abc” 0         000               “” 
1         001               “c” 
2         010               “b” 
3         011               “bc” 
4         100               “a” 
5         101               “ac” 
6         110               “ab” 
7         111               “abc” 

101000 11

n     binary   subsequence

001100 110000

(ignoring spaces)

| A | = n | B | = m



Runtime Example #8: LCS (cont.)

An Algorithm and Its Analysis:
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⨉2^n⨉2^m

⨉2^n

Θ(m)

Θ(m)

Θ(min(n,m))

For every subsequence S if A
    If S is subsequence of B
      Remember the longest so far  

Find first occurrence of S[0] in B
For i=1 to length(S)-1
   Find first occurrence of S[i] in B
   after occurrence of S[i-1]

Greedy approach:

For every subsequence S if A
   For every subsequence S’ if B
      If S=S’ 
         Remember the longest so far

Algorithm 1:

| A | = n | B | = m

T (n,m) = Θ(2  2  min(n,m))
m n

T (n,m) = Θ(2  min(n,m))
n

2

1

Algorithm 2:



Example #9

Find a tight bound on T (n) = lg(n!).
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meaning Θ

recall:   lg a b = lg a + lg b

T(n) = lg(n (n-1) (n-2) … 2 1)

T(n) = lg(n) + lg(n-1) + lg(n-2) + …  + lg(2) + lg(1)

T(n) =     lg(i) ≤     lg(n) = n lg(n) ∈ O(n lg(n))∑
n

i=1
∑
i=1

n

T(n) =     lg(i) ≥     lg(i) ≥     lg(n/2) = n/2 lg(n/2)∑
i=1

n

i=n/2
∑
n

∑
i=n/2

n

= n/2 lg(n・1/2)
= n/2 (lg(n)+ lg(1/2))
= n/2 (lg(n)-1)
= n/2 lg(n) - n/2
= n/4 lg(n) + n/4 lg(n) - n/2
≥ n/4 lg(n)   for n≥4
= 1/4 n lg(n)   for n≥4
∈ Ω(n lg(n))

As long as 
n/4 lg(n) ≥ n/2
lg(n) ≥ 2
n ≥ 4

(i.e., c=1/4 and n0=3)

Every term lg(i) ≤ lg(n) 

Every term lg(i) ≥ lg(n/2) 

Removing first half of the terms

T(n) ∈ O(n lg(n))
T(n) ∈ Ω(n lg(n))
So 
T(n) ∈ Θ(n lg(n))



Review: Logarithms

logb x is the exponent that b must be raised to, in order for it to
equal x .

I lg x ⌘ log2 x (base 2 is common in CS)

I log x ⌘ log10 x (base 10 is common for humans)

I ln x ⌘ loge x (the natural log)

Note: ⇥(lg n) = ⇥(log n) = ⇥(ln n) because

logb n =
logc n

logc b

for constants b, c > 1.
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Asymptotic Analysis Summary

I Determine the input size.
I Express the resources (time, memory, etc.) that an algorithm

requires as a function of its input size.
I Worst case
I Best case
I Average case

I Use asymptotic notation (O,⌦,⇥) to express the function
simply.
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Problem Complexity

The complexity of a problem is the complexity of the best
algorithm to solve that problem.

I We can sometimes prove a lower bound on a problem’s
complexity. To do so, we must show a lower bound on any
possible algorithm to solve it.

I A correct algorithm establishes an upper bound on the
problem’s complexity.

Searching an unsorted list using comparisons takes ⌦(n) time
(lower bound).
- Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes ⌦(n log n) time (lower
bound).
- Mergesort takes O(n log n) time (matching upper bound).
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Example 1:

Example 2:

Ω

O



Aside: Who Cares About ⌦(lg(n!))?

Can You Beat O(n log n) Sort?

Chew these over:

I How many values can you represent with c bits?

I Comparing two values (x < y) gives you one bit of
information.

I There are n! possible ways to reorder a list. We could number
them: 1, 2, . . . , n!

I Sorting basically means choosing which of those
reorderings/numbers you’ll apply to your input.

I How many comparisons does it take to pick among n!
numbers?
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z=2  values
In other words: c = lg z 

How many bits do we need to number them all:  lg(n!)

How many bits do we need to represent a number to 
choose between n! possibilities?
≥ lg(n!)
∈ Ω(n lg n)    see slide 37

Θ

c



Problem Complexity

Sorting: Solvable in polynomial time, tractable
Traveling Salesman Problem (TSP): In 1,290,319 km, can I drive to
all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to
find a solution takes exponential time in the worst case.

Are problems in NP really in P? $1,000,000 prize
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P

NP



Problem Complexity

Searching and Sorting: P, tractable
Traveling Salesman Problem: NP, intractable?
Kolmogorov Complexity: Uncomputable (undecidable)

FYI: The Kolmogorov Complexity of a string is the length of the
shortest description of it. It can’t be computed (e.g., Berry
Paradox).

FYI: Also uncomputable: the Halting Problem.

See Google or Wikipedia for more information, if you’re interested.
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