Unit \#1: Complexity Theory and Asymptotic Analysis
 CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2

Unit Outline

- Brief Proof Review
- Algorithm Analysis: Counting the Number of Steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given some code or an algorithm, write a formula that measures the number of steps executed by the code, as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- Know and compare the asymptotic bounds of common functions.
- Understand why-and when-to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Review: Proof by ...

- Counterexample
- Show an example which does not fit with the theorem.
- Thus, the theorem is false.
- Contradiction
- Assume the opposite of the theorem.
- Derive a contradiction. (e.g., $\mathrm{n}<\mathrm{n}$)
- Thus, the theorem is true.
- Induction
- Prove the theorem for a base case (e.g., $n=1$).
- Assume that it is true for all $n \leq k$ (for arbitrary k).
- Prove it for the next value $(n=k+1)$.
- Thus, the theorem is true.
X is true for $n=1$
If X is true for $n=k$, then X is true for $n=k+1$
Therefore,
X is true for $n=1,2,3,4, \ldots$

Example: Proof by Induction (Worked Example) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .

Examples:

x	$S(x):$ sum of digits of x	Divisible by 3
12	3	\sqrt{c}
17	8	-
171	9	\sqrt{c}
12003	6	$\sqrt{2}$

Example: Proof by Induction (Worked Example) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .

Proof:
Let $x_{1} x_{2} x_{3} \ldots x_{n}$ be the n decimal digits of x.
Let the sum of its decimal digits be

$$
S(x)=\sum_{i=1}^{n} x_{i} \begin{aligned}
& \text { "x is divisible by } 3 " \text { means: } \\
& x \bmod 3=0
\end{aligned}
$$

We'll prove the stronger result:
So we only need to show that:

$$
S(x) \bmod 3=0 \text { iff } x \bmod 3=0
$$

$$
S(x) \bmod 3=x \bmod 3
$$

Above is "stronger results" because
How do we use induction? we are showing more than needed!

Example: Proof by Induction (Worked Example) 2/4

Base Case:
Consider any number x with one ($n=1$) digit (0-9).

$$
S(x)=\sum_{i=1}^{n} x_{i}=x_{1}=x
$$

So, it's trivially true that $S(x) \bmod 3=x \bmod 3$ when $n=1$.

Example: Proof by Induction (Worked Example) 3/4

 Inductive Hypothesis:Assume for an arbitrary integer $k>0$ that for any number x with $n \leq k$ digits:

$$
S(x) \bmod 3=x \bmod 3
$$

Inductive Step:
Consider a number x with $n=k+1$ digits:
$x=876$
$k=2$

$$
x=x_{1} x_{2} \ldots x_{k} x_{k+1}
$$

$$
z=87
$$

Let z be the number $x_{1} x_{2} \ldots x_{k}$. It's a k-digit number; so, the inductive hypothesis applies:

$$
S(z) \bmod 3=z \bmod 3 .
$$

Example: Proof by Induction (Worked Example) 4/4

Inductive Step (continued):
$x \bmod 3=\left(10 z+x_{k+1}\right) \bmod 3$
$=\left(9 z+\underline{z}+x_{k+1}\right) \bmod 3$
$=\left(\underline{z+x_{k+1}}\right) \bmod 3$
$=\left(S(z)+x_{k+1}\right) \bmod 3$
$=\left(x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}\right) \bmod 3 \quad S(z) \bmod 3=z \bmod 3$
$=S(x) \bmod 3$
QED (quod erat demonstrandum: "what was to be demonstrated")

Because we have proved both the Base Case and Inductive Step.

Induction is used to prove the correctness and running time of algorithms that use loops or recursion

A Task to Solve and Analyze

Find a student's name in a class given her student ID.

- Consider the data that you need to store.
id , name
- Consider the operation.

$$
\begin{aligned}
& \text { "search" but also probably needed: } \\
& \text { "insert" } \\
& \text { "delete" }
\end{aligned}
$$

Yes, because some are faster (more efficient) for this problem when it gets large enough
How can we compare them?

Efficiency

Suppose we have two or more algorithms that each solve the same problem.

- Some measure of efficiency is needed to determine which algorithm is "better".
- Complexity theory addresses the issue of how efficient an algorithm is.
- Suggest some qualities or metrics that we can measure, count, or compare in order to determine the efficiency of an algorithm.
e.g.:
- milliseconds
- number of operations to run
- number of lines of code to run
- amount of memory needed

We will see that the exact values for such qualities do not matter when using asymptotic notation ($0, \Theta, \Omega, \ldots$)

Analysis of Algorithms

- The analysis of an algorithm can give insight into two important considerations:
- How long the program runs (time complexity or runtime)
- How much memory it uses (space complexity)
- Analysis can provide insight into alternative algorithms.
- The input size is indicated by a non-negative integer n (but sometimes there are multiple measures of an input's size).
- Running time can be summarized-and represented-by a real-valued function of n such as:
- $T(n)=4 n+5$
- $T(n)=0.5 n \log n-2 n+7$
- $T(n)=2^{n}+n^{3}+3 n$
E.g., (see slide 9)
n : number of students
$\mathrm{T}(\mathrm{n})$: time to find one student

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$
$\log n$	1 ps
n	10 ps
$n \log n$	10 ps
n^{2}	100 ps
2^{n}	1 ns

nanosecond (ns) = one-billionth of a second

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$	100
$\log n$	1 ps	2 ps
n	10 ps	100 ps
$n \log n$	10 ps	200 ps
n^{2}	100 ps	10 ns
2^{n}	1 ns	1 Es

nanosecond (ns) = one-billionth of a second

Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$	100	1,000
$\log n$	1 ps	2 ps	3 ps
n	10 ps	100 ps	1 ns
$n \log n$	10 ps	200 ps	3 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$
2^{n}	1 ns	$\frac{1 \mathrm{Es}}{\text { "intractable" }}$	
nanosecond $(\mathrm{ns})=$ one-billionth of a second			
microsecond $(\mu \mathrm{s})=$ one-millionth of a second			
Exasecond $(\mathrm{Es})=32$ billion years			

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$T(\mathrm{n})$	$\mathrm{n}=10$	100	1,000	10,000
$\log n$	1 ps	2 ps	3 ps	4 ps
n	10 ps	100 ps	1 ns	10 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$	

nanosecond (ns) = one-billionth of a second microsecond ($\mu \mathrm{s}$) = one-millionth of a second Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$	100	1,000	10,000	10^{5}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$		

nanosecond (ns) = one-billionth of a second
microsecond ($\mu \mathrm{s}$) = one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$	100	1,000	10,000	10^{5}	10^{6}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$			

nanosecond (ns) = one-billionth of a second
microsecond ($\mu \mathrm{s}$) = one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size n (e.g., $T(n)=\log n$):

$\mathrm{T}(\mathrm{n})$	$\mathrm{n}=10$	100	1,000	10,000	10^{5}	10^{6}	10^{9}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps	9 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$	1 ms
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$	9 ms
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s	1 1week
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$			Real life examples:	

nanosecond (ns) = one-billionth of a second microsecond ($\mu \mathrm{s}$) $=$ one-millionth of a second Exasecond (Es) $=32$ billion years

Human genome size:
$n=3 \times 10^{\wedge} 9$ base pairs

Pine tree genome size:
$n=23 \times 10^{\wedge} 9$ base pairs

Analyzing Code

// Linear Search
find(key, array):
for $\mathrm{i}=0$ to (length(array) - 1) do
if array[i] == key return i
return -1

1) What's the input size n ?
$\mathrm{n}=$ size of the input "array"
Also, $k=$ size of "key" (optional because we can assume all keys have max key size)
Thus, let's assume that here == takes constant time

Analyzing Code

// Linear Search
find(key, array):

```
for i = O to (length(array) - 1) do
```

 if array[i] == key
 return i
 return -1
 2) Should we assume a worst-case, best-case, or average-case scenario for running an input of size n ?

Answer: worst-case
because n does not tell us enough about the input.
For example, for an given array with size n :

- The key may be located at array[0]
- The key may not be in the array at all

Thus, the results of worst case analysis is meaningful for any given n - it cannot get worse than the worst case!

Analyzing Code

$$
\mathrm{n}=\text { the size of "array" }
$$

// Linear Search
find(key, array):

3) How many lines are executed as a function of n in the worst-case?
$T(n)=2 n+1$
Is lines the right unit? Maybe - Usually
It is often proportional to how much time the algorithm takes to run given the input size.

Analyzing Code

The number of lines executed in the worst-case is:

$$
T(n)=2 n+1
$$

- Does the " 1 " matter? As n gets bigger, $2 n$ dominates 1 . So "no"
- Does the " 2 " matter?

The time per line changes by constant factor:

- As technology changes
- between different computers

Usually useful to ignore the constant factors So, "no"

How can we abstract from things that do not matter? See next slide!

Big-O Notation

Assume that for every integer $n, T(n) \geq 0$ and $f(n) \geq 0$.
$T(n) \in \underline{O}(f(n))$ iff there are positive constants \underline{c} and $\underline{n_{0}}$ such that

$$
T(n) \leq c f(n) \text { for all } n \geq n_{0} \text {. }
$$

Meaning: " $T(n)$ grows no faster than $f(n)$ "
Example:
$T(n)=2 n+1 \quad f(n)=n$
Claim: $\quad 2 n+1 \in O(n)$
Proof:
$2 n+1 \leq 3 n \quad$ for $n \geq 1$
$1 \leq n \quad$ for $\mathrm{n} \geq 1 \quad$ (subtract 2 n from both sides)
which is true intuitively
So, we found some c and $\mathrm{n} 0(\mathrm{c}=3$ and $\mathrm{n} 0=1)$ for which the above definition holds.
Thus, $\quad 2 n+1 \in O(n) \quad$ or $\quad T(n) \in O(f(n))$

Images with minor changes from:
Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

- Big-O: $T(n) \in O(f(n))$ iff there are positive constants c and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$.
i.e.: "T(n) grows slower or with the same rate as $f(n)$ "
$T(n) " \leq$ " $f(n)$
- Big-Omega: $T(n) \in \Omega(f(n))$ iff there are positive constants c and n_{0} such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$.
i.e.: "T(n) grows faster or with the same rate as $f(n)$ "

Exercise: show that
$T(n) \in \Omega(f(n)) \quad \Longleftrightarrow \quad f(n) \in O(T(n))$

- Big-Theta: $T(n) \in \Theta(f(n))$ iff $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.
i.e.: " $\mathrm{T}(\mathrm{n})$ grows with the same rate as $\mathrm{f}(\mathrm{n})^{\text {" }}$

Equivalent alternative definition for Θ :
$T(n) \in \Theta(f(n))$ iff there are positive constants $c 1, c 2$ and $n 0$ such that $T(n) \geq c 1 f(n)$ and $T(n) \leq c 2 f(n)$ for all $n \geq n 0$.

Asymptotic Notation (cont.)

- Little-o: $T(n) \in o(f(n))$ iff for any positive constant c, there exists n_{0} such that $T(n)<c f(n)$ for all $n \geq n_{0}$.
i.e.: " $T(n)$ grows strictly slower than $f(n)$ "
$T(n) "<" f(n)$ limit as $n \rightarrow \infty, T(n) / f(n)=0$
- Little-omega: $T(n) \in \omega(f(n))$ iff for any positive constant c, there exists n_{0} such that $T(n)>c f(n)$ for all $n \geq n_{0}$.

i.e.: "T(n) grows strictly faster than $f(n)$ "

$T(n) ">" f(n)$

$$
\text { limit as } n \rightarrow \infty, T(n) / f(n)=\infty
$$

Note that not all pairs of functions are related, for example:
$\mathrm{n}^{\wedge}(1+\sin (\mathrm{n}))$ vs. n cannot be comparied

Examples

$$
\begin{aligned}
10,000 n^{\wedge} 2+25 n & \leq 10,000 n^{\wedge} 2+25 n^{\wedge} 2 & & \text { for } n \geq 1 \\
& \leq 10,025 n^{\wedge} 2 & & \text { for } n \geq 1
\end{aligned}
$$

So $\mathrm{c}=10,025$ and $\mathrm{n} 0=1$, and thus
$10,000 n^{\wedge} 2+25 n \in O\left(n^{\wedge} 2\right)$
$10,000 n^{\wedge} 2+25 n \geq 10,000 n^{\wedge} 2 \quad$ for $n \geq 1$
$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
So $\mathrm{c}=10,000$ and $\mathrm{n} 0=1$, and thus
$10,000 n^{\wedge} 2+25 n \in \Omega\left(n^{\wedge} 2\right)$
Thus:
$10,000 n^{\wedge} 2+25 n \in \Theta\left(n^{\wedge} 2\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
Use $c=10^{\wedge}-10$ and $n 0=1$ for both $O\left(n^{\wedge} 2\right)$ and $\Omega\left(n^{\wedge} 2\right)$ thus $\Theta\left(n^{\wedge} 2\right)$
$n \log n \in O\left(n^{2}\right)$
Thus from now on you can always assume that $\log (\mathrm{n}) \leq \mathrm{c} n$ and
$\log (n) \in O(n)$
$n \log (n) \leq c n^{\wedge} 2$ $\log (\mathrm{n}) \leq \mathrm{c} n$

How do we know if this always hold as n grows?
\lim as $n \rightarrow \infty, \log (n) /(c n)$
consider their rate of growth (or derivatives)
\lim as $n \rightarrow \infty,(1 / n) /(c)=0$
So $\mathrm{c}=1$ and $\mathrm{n} 0=1, \mathrm{n} \log (\mathrm{n}) \in \mathrm{o}\left(\mathrm{n}^{\wedge} 2\right)$ (i.e. even little 0)

Examples (cont.)

\(\left.$$
\begin{array}{ll}n \log n \in \Omega(n) & \begin{array}{l}n \log (\mathrm{n}) \geq \mathrm{c} n \\
\log (\mathrm{n}) \geq \mathrm{c}\end{array}
$$

\mathrm{c}=1 and \mathrm{n} 0=1\end{array}\right]\)| $n^{3}+4 \in o\left(n^{4}\right)$ | |
| :--- | :--- |
| $n^{3}+4 \in \omega\left(n^{2}\right)$ | \lim as $\mathrm{n} \rightarrow \infty,\left(\mathrm{n}^{\prime} 3\right) /\left(\mathrm{n}^{\prime} 4\right)=0$ |
| | |

Analyzing Code

// Linear Search
find(key, array):
for $i=0$ to (length(array) - 1) do
if array[i] == key
return i
return -1
4) How does $T(n)=2 n+1$ behave asymptotically? What is the appropriate order notation? ($O, o, \Theta, \Omega, \omega$?)

$$
\left.\begin{array}{lll}
2 n+1 \in O(n) & \ldots & \text { saying the algorithm is fast }
\end{array}\right) \text { What we can say } \quad \text { about best case: }
$$

Asymptotically Smaller?

$$
n^{3}+2 n^{2} \quad \text { versus } \quad 100 n^{2}+1000
$$

Asymptotically Smaller?

ignore lower terms: ($2 \mathrm{n}^{\wedge} 2$) and (1000) ignore multiplicative constants: 100

$$
n^{3}+2 n^{2} \quad \text { versus } \quad 100 n^{2}+1000
$$

$$
n^{\wedge} 3+2 n^{\wedge} 2 \in \Omega\left(100 n^{\wedge} 2+1000\right)
$$

Asymptotically Smaller? (cont.)

$$
n^{0.1} \quad \text { versus } \quad \log _{2} n
$$

Asymptotically Smaller? (cont.)

Asymptotically Smaller? (cont.)

$$
n+100 n^{0.1} \quad \text { versus } \quad 2 n+10 \log _{2} n
$$

Asymptotically Smaller? (cont.)

Here, you can always come up with some constant c to make cA asymptotically larger than B, or
to make cB asymptotically larger than A.

Typical Asymptotics

$$
\log _{b} n=\log _{a} n / \log _{a} b
$$

Tractable

- Constant: $\Theta(1)$
- Logarithmic: $\Theta(\log n)\left(\log _{b} n, \log n^{2} \in \Theta(\log n)\right)$

Poly-Log: $\Theta\left(\log ^{k} n\right)\left(\log ^{k} n \equiv(\log n)^{k}\right)$

- Linear: $\Theta(n)$
- Log-Linear: $\Theta(n \log n)$
- Superlinear: $\Theta\left(n^{1+c}\right)(c$ is a constant $>0)$
- Quadratic: $\Theta\left(n^{2}\right)$
- Cubic: $\Theta\left(n^{3}\right)$
- Polynomial: $\Theta\left(n^{k}\right)$ (k is a constant)

Intractable

- Exponential: $\Theta\left(c^{n}\right)(c$ is a constant $>1)$

Sample Asymptotic Relations

Example functions belonging to

- $\left\{1, \log n, n^{0.9}, n, 100 n\right\} \subset O(n)$
- $\left\{n, n \log n, n^{2}, 2^{n}\right\} \subset \Omega(n)$
- $\{n, 100 n, n+\log n\} \subset \Theta(n)$
- $\left\{1, \log n, n^{0.9}\right\} \subset o(n)$
- $\left\{n \log n, n^{2}, 2^{n}\right\} \subset \omega(n)$

Analyzing Code

```
e.g.
checking equality i<=j
or adding values i+=1;
```

The sum also constant time
IF all the operations take constant time

- Single operations: constant time
- Consecutive operations: sum of the operations' times
- Conditionals: condition time plus the maximum (for worst-case analysis) of the branch times
- Loops: sum of the loop body times (loop body time \times \#executed)
- Function call: time for the function

Above all, use common sense!

Runtime Example \#1

n is size of input array and $\mathrm{T}(\mathrm{n})$ is time to run

Runtime Example \#2

$$
i=1
$$

$$
\sum_{j=i}^{n} 1=n-j+1
$$

$$
\text { for } j=i \text { to } n \text { do }
$$

$$
T(n)=\sum_{i=1}^{n-1} n-j+1
$$

 sum \(=\) sum +1
 $$
T(n)=n+(n-1)+\ldots+3+2
$$

e.g., with $n=10$

add

$$
T(n)=2+3+\ldots+(n-1)+n
$$

$$
T(n)+T(n)=(n+2)+(n+2)+\ldots \quad+(n-2)+(n-2)
$$

($n-1$) times

$$
\begin{aligned}
T(n)+T(n) & =(n+2)(n-1) \\
T(n) & =(n+2)(n-1) / 2 \\
T(n) & =n^{\wedge} 2 / 2+n / 2-1 \\
T(n) & \leq n^{\wedge} 2 / 2+n^{\wedge} 2 / 2-1 \\
T(n) & \leq n^{\wedge} 2 \\
T(n) & \in O\left(n^{\wedge} 2\right) \\
T(n) & =n^{\wedge} 2 / 2+n / 2-1 \\
T(n) & \geq n^{\wedge} 2 / 4 \text { for } n>1 \\
T(n) & \in \Omega\left(n^{\wedge} 2\right)
\end{aligned} \quad T(n) \in O\left(n^{\wedge} 2\right)
$$

Runtime Example \#3

$$
\begin{aligned}
& \mathrm{i}=1,2,4,8,16, \ldots \\
& \mathrm{i}=2^{\wedge} 0,2^{\wedge} 1,2^{\wedge} 2,2^{\wedge} 3, \ldots, 2^{\wedge} \mathrm{k} \\
& \quad \text { such that } 2^{\wedge} \mathrm{k}<\mathrm{n} \leq 2^{\wedge}(\mathrm{k}+1)
\end{aligned}
$$

Runtime Example \#4
$b=1$ line
$\mathrm{c}=2$ lines

Usually these exact values for constants b and c do not matter because they will be ignored for asymptotic relations.

$$
\text { int } \max (A, n) \text { base case }
$$

$$
\text { if (} \mathrm{n}==1 \text {) return } \mathrm{A}[0]
$$

$$
\text { return larger of } \mathrm{A}[\mathrm{n}-1] \text { and } \max (\mathrm{A}, \mathrm{n}-1)
$$

Recursion almost always yields a recurrence relation:

$$
\begin{aligned}
& \begin{array}{l}
\text { base case } \\
T(1) \leq b \\
T(n) \leq c+T(n-1) \quad \text { if } n>1
\end{array}
\end{aligned}
$$

Solving the recurrence:

$$
\begin{aligned}
& \text { because } \\
& T(n-1) \leq c+T(n-2)
\end{aligned}
$$

$$
\begin{aligned}
T(n) & \leq c+c+T(n-2) \\
& \leq c+c+c+T(n- \\
& \leq k c+T(n-k) \\
& =(n-1) c+T(1) \\
& \leq(n-1) c+b
\end{aligned}
$$

(substitution)

$$
\leq c+c+c+T(n-3) \quad \text { (substitution) } T(n-2) \leq c+T(n-3)
$$

(exens "quesssing"

$$
(\text { for } k=n-1)
$$

Set k such that:

n-k = 1
$T(n) \in \mathrm{O}(\mathrm{n})$

Runtime Example \#5: Mergesort

Takes Takes
constan Mergesort algorithm:
t time, Split list in half, sort first half, sort second half, merge together
so ${ }^{2}$ Recurrence relation: $T(\mathrm{n} / 2) \quad \mathrm{cn}$ for some constant c ignored Recurrence relation:

$$
\begin{aligned}
& T(1) \leq b \\
& T(n) \leq 2 T(n / 2)+c n \quad \text { if } n>1
\end{aligned}
$$

Solving recurrence:

$$
\begin{aligned}
& T(n) \leq 2 \underline{T(n / 2)}+c n \quad T(n / 2) \leq 2 T(n / 4)+\mathrm{cn} / 2 \\
& \leq 2(2 T(n / 4)+c n / 2)+c n \quad \text { (substitution) } \\
& =4 \underline{T(n / 4)}+2 c n \quad T(n / 4) \leq 2 T(n / 8)+\mathrm{cn} / 4 \\
& \leq 4(2 T(n / 8)+c n / 4)+2 c n \text { (substitution) } \\
& =8 T(n / 8)+3 c n \\
& \leq 2^{k} T\left(n / 2^{k}\right)+k c n \quad \text { (extrapolating } k>0 \text {) } \\
& =n T(1)+c n \lg n \quad n / 2^{k}=1\left(\text { for } 2^{k}=n\right) \quad \mathrm{k}=\lg \mathrm{n} \\
& \leq n b+c n \lg n \\
& T(n) \in O(n \lg n)
\end{aligned}
$$

Runtime Example \#6: Fibonacci (page 1 of 2)
Recursive Fibonacci:
int fib(n)
if ($\mathrm{n}=0$ or $\mathrm{n}==1$) return n
return fib(n-1) $+\mathrm{fib}(\mathrm{n}-2)$
Recurrence Relation: (lower bound)

$$
\begin{aligned}
& T(0) \geq b \\
& T(1) \geq b \\
& T(n) \geq T(n-1)+T(n-2)+c \quad \text { if } n>1
\end{aligned}
$$

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

where $\varphi=(1+\sqrt{5}) / 2$
Note: $\varphi^{2}=\varphi+1$

Runtime Example \#6: Fibonacci (page 2 of 2)

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

Proof: (by induction on n)
Base Case: $T(0) \geq b>b \varphi^{-1}$ and $T(1) \geq b=b \varphi^{0}$. Inductive Hypothesis: Assume $T(n) \geq b \varphi^{n-1}$ for all $n \leq k$. Inductive Step: Show that it's true for $n=k+1$.

$$
\begin{aligned}
T(n) & \geq T(n-1)+T(n-2)+c \\
& \geq b \varphi^{n-2}+b \varphi^{n-3}+c \quad \text { (by inductive hypothesis) } \\
& =b \varphi^{n-3}(\varphi+1)+c \\
& =b \varphi^{n-3} \varphi^{2}+c \\
& \geq b \varphi^{n-1}
\end{aligned}
$$

$T(n) \in$
Why? The same recursive call is made numerous times.

Example \#7: Learning from Analysis

To avoid recursive calls:
As each value is computed, store them in an array.

- Store base case values in a table.
- Before calculating the value for n :
- Check if the value for n is in the table.
- If so, return it.
- If not, calculate it and store it in the table.
fib 2 fib 1
just look up values from
calculations

This strategy is called memoization and is closely related to dynamic programming.

How much time does this version take?
$\Theta(\mathrm{n})$ because we compute all values from 1 to n only once.

Runtime Example \#8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example: $\quad|A|=n \quad|B|=m$

$$
\begin{aligned}
A= & \underline{\text { search }} \frac{\text { me }}{101000} 11
\end{aligned}
$$

$B=$ insane method 001100110000
A longest common subsequence is "same"; another is "seme".
(ignoring spaces)
Applications of LCS:
DNA sequencing, revision control systems, diff, ...

Example: subsequences of "abc"	n	binary	subsequence
	0	000	""
	1	001	"c"
	2	010	"b"
	3	011	"bc"
	4	100	"a"
	5	101	"ac"
	6	110	"ab"
	7	111	"abc"

Runtime Example \#8: LCS (cont.) $|A|=n \quad|B|=m$
An Algorithm and Its Analysis:
Algorithm 1:
For every subsequence S if A
For every subsequence S^{\prime} if B If $\mathrm{S}=\mathrm{S}^{\prime}$ Remember the longest so far

$$
\begin{aligned}
\hline \mathbf{O}_{\mathbf{(m i n}(\mathbf{n}, \mathbf{m}))} \times \mathbf{2}^{\wedge} \mathbf{m} & \times \mathbf{2}^{\wedge} \mathbf{n} \\
T_{1}(n, m) & =\Theta\left(2^{m} 2^{n} \min (n, m)\right)
\end{aligned}
$$

Algorithm 2:
For every subsequence S if A
If S is subsequence of B Remember the longest so far

$$
T_{2}(n, m)=\Theta\left(2^{n} \min (n, m)\right)
$$

Greedy approach:
Find first occurrence of $\mathrm{S}[0]$ in B
For $\mathrm{i}=1$ to length(S)-1
Find first occurrence of S[i] in B after occurrence of $\mathrm{S}[\mathrm{i}-1]$

Example \#9

Find a tight bound on $T(n)=\lg (n!)$.

$$
\begin{aligned}
& T(n)=\lg (n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1) \\
& T(n)=\lg (n)+\lg (n-1)+\lg (n-2)+\ldots+\lg (2)+\lg (1) \quad \text { Every term } \lg (i) \leq \lg (n) \\
& T(n)=\sum_{i=1}^{n} \lg (i) \leq \sum_{i=1}^{n} \lg (n)=n \lg (n) \in O(n \lg (n)) \quad
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{n} \lg (\mathrm{n})) \\
& \mathrm{T}(\mathrm{n}) \in \Omega(\mathrm{n} \lg (\mathrm{n})) \\
& \mathrm{So} \\
& \mathrm{~T}(\mathrm{n}) \in \Theta(\mathrm{n} \lg (\mathrm{n}))
\end{aligned}
$$

Review: Logarithms

$\log _{b} x$ is the exponent that b must be raised to, in order for it to equal x.

- $\lg x \equiv \log _{2} x$ (base 2 is common in CS)
- $\log x \equiv \log _{10} x$ (base 10 is common for humans)
- $\ln x \equiv \log _{e} x$ (the natural log)

Note: $\Theta(\lg n)=\Theta(\log n)=\Theta(\ln n)$ because

$$
\log _{b} n=\frac{\log _{c} n}{\log _{c} b}
$$

for constants $b, c>1$.

Asymptotic Analysis Summary

- Determine the input size.
- Express the resources (time, memory, etc.) that an algorithm requires as a function of its input size.
- Worst case
- Best case
- Average case
- Use asymptotic notation (O, Ω, Θ) to express the function simply.

Problem Complexity

The complexity of a problem is the complexity of the best algorithm to solve that problem.

- We can sometimes prove a lower bound on a problem's complexity. To do so, we must show a lower bound on any possible algorithm to solve it.
- A correct algorithm establishes an upper bound on the problem's complexity.

Example 1:

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

- Linear search takes $O(n)$ time (matching upper bound).

Example 2:

Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).

- Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg (n!))$?

Can You Beat $\stackrel{\ominus}{O}(n \log n)$ Sort?
Chew these over:
z=2 2^{C} values

- How many values can you represent with c bits? In other words: $c=\lg z$
- Comparing two values $(x<y)$ gives you one bit of information.
- There are n ! possible ways to reorder a list. We could number them: $1,2, \ldots, n!$ How many bits do we need to number them all: $\lg (n!)$
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n ! numbers? How many bits do we need to represent a number to choose between n ! possibilities?
$\geq \lg (\mathrm{n}!)$
$\in \Omega(\mathrm{n} \lg \mathrm{n}) \quad$ see slide 37

Problem Complexity

Sorting: Solvable in polynomial time, tractable
Traveling Salesman Problem (TSP): In 1,290,319 km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

NP Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.

Are problems in NP really in P? \$1,000,000 prize

Problem Complexity

Searching and Sorting: P, tractable
Traveling Salesman Problem: NP, intractable?
Kolmogorov Complexity: Uncomputable (undecidable)
FYI: The Kolmogorov Complexity of a string is the length of the shortest description of it. It can't be computed (e.g., Berry Paradox).

FYI: Also uncomputable: the Halting Problem.
See Google or Wikipedia for more information, if you're interested.

