Unit \#1: Complexity Theory and Asymptotic Analysis

CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2

Unit Outline

- Brief Proof Review
- Algorithm Analysis: Counting the Number of Steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given some code or an algorithm, write a formula that measures the number of steps executed by the code, as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- Know and compare the asymptotic bounds of common functions.
- Understand why-and when-to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Review: Proof by ...

- Counterexample
- Show an example which does not fit with the theorem.
- Thus, the theorem is false.
- Contradiction
- Assume the opposite of the theorem.
- Derive a contradiction.
- Thus, the theorem is true.
- Induction
- Prove the theorem for a base case (e.g., $n=1$).
- Assume that it is true for all $n \leq k$ (for arbitrary k).
- Prove it for the next value $(n=k+1)$.
- Thus, the theorem is true.

Example: Proof by Induction (Worked Example) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .

Proof:
Let $x_{1} x_{2} x_{3} \ldots x_{n}$ be the n decimal digits of x.
Let the sum of its decimal digits be

$$
S(x)=\sum_{i=1}^{n} x_{i}
$$

We'll prove the stronger result:

$$
S(x) \bmod 3=x \bmod 3
$$

How do we use induction?

Example: Proof by Induction (Worked Example) 2/4

Base Case:
Consider any number x with one ($n=1$) digit (0-9).

$$
S(x)=\sum_{i=1}^{n} x_{i}=x_{1}=x
$$

So, it's trivially true that $S(x) \bmod 3=x \bmod 3$ when $n=1$.

Example: Proof by Induction (Worked Example) 3/4

Inductive Hypothesis:
Assume for an arbitrary integer $k>0$ that for any number x with $n \leq k$ digits:

$$
S(x) \bmod 3=x \bmod 3
$$

Inductive Step:
Consider a number x with $n=k+1$ digits:

$$
x=x_{1} x_{2} \ldots x_{k} x_{k+1} .
$$

Let z be the number $x_{1} x_{2} \ldots x_{k}$. It's a k-digit number; so, the inductive hypothesis applies:

$$
S(z) \bmod 3=z \bmod 3
$$

Example: Proof by Induction (Worked Example) 4/4

Inductive Step (continued):

$$
\begin{aligned}
x \bmod 3 & =\left(10 z+x_{k+1}\right) \bmod 3 & & \left(x=10 z+x_{k+1}\right) \\
& =\left(9 z+z+x_{k+1}\right) \bmod 3 & & \\
& =\left(z+x_{k+1}\right) \bmod 3 & & (9 z \text { is divisible by } \\
& =\left(S(z)+x_{k+1}\right) \bmod 3 & & \text { (inductive hypothe } \\
& =\left(x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}\right) \bmod 3 & & \\
& =S(x) \bmod 3 & &
\end{aligned}
$$

QED (quod erat demonstrandum: " what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID.

- Consider the data that you need to store.
- Consider the operation.
- Consider the possible data structures.
- Does it matter which data structure we use?

Efficiency

Suppose we have two or more algorithms that each solve the same problem.

- Some measure of efficiency is needed to determine which algorithm is "better".
- Complexity theory addresses the issue of how efficient an algorithm is.
- Suggest some qualities or metrics that we can measure, count, or compare in order to determine the efficiency of an algorithm.

Analysis of Algorithms

- The analysis of an algorithm can give insight into two important considerations:
- How long the program runs (time complexity or runtime)
- How much memory it uses (space complexity)
- Analysis can provide insight into alternative algorithms.
- The input size is indicated by a non-negative integer n (but sometimes there are multiple measures of an input's size).
- Running time can be summarized-and represented-by a real-valued function of n such as:
- $T(n)=4 n+5$
- $T(n)=0.5 n \log n-2 n+7$
- $T(n)=2^{n}+n^{3}+3 n$

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10
$\log n$	1 ps
n	10 ps
$n \log n$	10 ps
n^{2}	100 ps
2^{n}	1 ns

nanosecond (ns) = one-billionth of a second

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100
$\log n$	1 ps	2 ps
n	10 ps	100 ps
$n \log n$	10 ps	200 ps
n^{2}	100 ps	10 ns
2^{n}	1 ns	1 Es

nanosecond (ns) = one-billionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100	1,000
$\log n$	1 ps	2 ps	3 ps
n	10 ps	100 ps	1 ns
$n \log n$	10 ps	200 ps	3 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$

nanosecond (ns) = one-billionth of a second microsecond $(\mu \mathrm{s})=$ one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100	1,000	10,000
$\log n$	1 ps	2 ps	3 ps	4 ps
n	10 ps	100 ps	1 ns	10 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$	

nanosecond (ns) = one-billionth of a second microsecond $(\mu \mathrm{s})=$ one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100	1,000	10,000	10^{5}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$		

nanosecond (ns) = one-billionth of a second microsecond $(\mu \mathrm{s})=$ one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$			

nanosecond (ns) = one-billionth of a second microsecond $(\mu \mathrm{s})=$ one-millionth of a second
Exasecond (Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run $T(n)$ operations, where $T(n)$ is a function of the input size $n($ e.g., $T(n)=\log n$):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}	10^{9}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps	9 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$	1 ms
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$	9 ms
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s	1 week
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$				

nanosecond (ns) = one-billionth of a second microsecond $(\mu \mathrm{s})=$ one-millionth of a second
Exasecond (Es) $=32$ billion years

Analyzing Code

```
// Linear Search
find(key, array):
    for i = 0 to (length(array) - 1) do
        if array[i] == key
        return i
    return -1
```

1) What's the input size n ?

Analyzing Code

```
// Linear Search
find(key, array):
    for i = 0 to (length(array) - 1) do
        if array[i] == key
        return i
    return -1
```

2) Should we assume a worst-case, best-case, or average-case scenario for running an input of size n ?

Analyzing Code

```
// Linear Search
find(key, array):
for i = 0 to (length(array) - 1) do
        if array[i] == key
        return i
    return -1
```

3) How many lines are executed as a function of n in the worst-case?
$T(n)=$
Is lines the right unit?

Analyzing Code

The number of lines executed in the worst-case is:

$$
T(n)=2 n+1
$$

- Does the " 1 " matter?
- Does the " 2 " matter?

Big-O Notation

Assume that for every integer $n, T(n) \geq 0$ and $f(n) \geq 0$.
$T(n) \in O(f(n))$ iff there are positive constants c and n_{0} such that

$$
T(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Meaning: " $T(n)$ grows no faster than $f(n)$ "

Asymptotic Notation

- Big-O: $T(n) \in O(f(n))$ iff there are positive constants c and n_{0} such that $T(n) \leq c f(n)$ for all $n \geq n_{0}$.
- Big-Omega: $T(n) \in \Omega(f(n))$ iff there are positive constants c and n_{0} such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$.
- Big-Theta: $T(n) \in \Theta(f(n))$ iff $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.

Asymptotic Notation (cont.)

- Little-o: $T(n) \in o(f(n))$ iff for any positive constant c, there exists n_{0} such that $T(n)<c f(n)$ for all $n \geq n_{0}$.
- Little-omega: $T(n) \in \omega(f(n))$ iff for any positive constant c, there exists n_{0} such that $T(n)>c f(n)$ for all $n \geq n_{0}$.

Examples

$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$
$10^{-10} n^{2} \in \Theta\left(n^{2}\right)$
$n \log n \in O\left(n^{2}\right)$

Examples (cont.)

$n \log n \in \Omega(n)$
$n^{3}+4 \in o\left(n^{4}\right)$
$n^{3}+4 \in \omega\left(n^{2}\right)$

Analyzing Code

```
// Linear Search
find(key, array):
    for i = 0 to (length(array) - 1) do
        if array[i] == key
        return i
    return -1
```

4) How does $T(n)=2 n+1$ behave asymptotically? What is the appropriate order notation? $(O, o, \Theta, \Omega, \omega$?)

Asymptotically Smaller?

$$
n^{3}+2 n^{2} \quad \text { versus } \quad 100 n^{2}+1000
$$

Asymptotically Smaller?

$$
n^{3}+2 n^{2} \quad \text { versus } \quad 100 n^{2}+1000
$$

Asymptotically Smaller? (cont.)

$$
n^{0.1} \quad \text { versus } \quad \log _{2} n
$$

Asymptotically Smaller? (cont.)

$$
n^{0.1} \quad \text { versus } \quad \log _{2} n
$$

Asymptotically Smaller? (cont.)

$$
n+100 n^{0.1} \quad \text { versus } \quad 2 n+10 \log _{2} n
$$

Asymptotically Smaller? (cont.)

$$
n+100 n^{0.1} \quad \text { versus } \quad 2 n+10 \log _{2} n
$$

Typical Asymptotics

Tractable

- Constant: $\Theta(1)$
- Logarithmic: $\Theta(\log n)\left(\log _{b} n, \log n^{2} \in \Theta(\log n)\right)$
- Poly-Log: $\Theta\left(\log ^{k} n\right)\left(\log ^{k} n \equiv(\log n)^{k}\right)$
- Linear: $\Theta(n)$
- Log-Linear: $\Theta(n \log n)$
- Superlinear: $\Theta\left(n^{1+c}\right)(c$ is a constant $>0)$
- Quadratic: $\Theta\left(n^{2}\right)$
- Cubic: $\Theta\left(n^{3}\right)$
- Polynomial: $\Theta\left(n^{k}\right)$ (k is a constant)

Intractable

- Exponential: $\Theta\left(c^{n}\right)(c$ is a constant $>1)$

Sample Asymptotic Relations

- $\left\{1, \log n, n^{0.9}, n, 100 n\right\} \subset O(n)$
- $\left\{n, n \log n, n^{2}, 2^{n}\right\} \subset \Omega(n)$
- $\{n, 100 n, n+\log n\} \subset \Theta(n)$
- $\left\{1, \log n, n^{0.9}\right\} \subset o(n)$
- $\left\{n \log n, n^{2}, 2^{n}\right\} \subset \omega(n)$

Analyzing Code

- Single operations: constant time
- Consecutive operations: sum of the operations' times
- Conditionals: condition time plus the maximum (for worst-case analysis) of the branch times
- Loops: sum of the loop body times
- Function call: time for the function

Above all, use common sense!

Runtime Example \#1

$$
\begin{aligned}
\text { for } & i=1 \text { to } n \text { do } \\
\text { for } & j=1 \text { to } n \text { do } \\
& \text { } \operatorname{sum}=\text { sum }+1
\end{aligned}
$$

Runtime Example \#2

$$
\begin{aligned}
& i=1 \\
& \text { while } i<n \text { do } \\
& \text { for } j=i \text { to } n \text { do } \\
& \quad \text { sum }=\text { sum }+1
\end{aligned}
$$

Runtime Example \#3

$$
\begin{aligned}
& i=1 \\
& \text { while } i=n \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \quad \text { sum }=\text { sum }+1 \\
& i+=i
\end{aligned}
$$

Runtime Example \#4

int $\max (\mathrm{A}, \mathrm{n})$:

$$
\begin{aligned}
& \text { if }(\mathrm{n}==1) \text { return } \mathrm{A}[0] \\
& \text { return larger of } \mathrm{A}[\mathrm{n}-1] \text { and } \max (\mathrm{A}, \mathrm{n}-1)
\end{aligned}
$$

Recursion almost always yields a recurrence relation:

$$
\begin{aligned}
& T(1) \leq b \\
& T(n) \leq c+T(n-1) \quad \text { if } n>1
\end{aligned}
$$

Solving the recurrence:

$$
\begin{aligned}
T(n) & \leq c+c+T(n-2) & & \text { (substitution) } \\
& \leq c+c+c+T(n-3) & & (\text { substitution) } \\
& \leq k c+T(n-k) & & (\text { extrapolating } k>0) \\
& =(n-1) c+T(1) & & (\text { for } k=n-1) \\
& \leq(n-1) c+b & &
\end{aligned}
$$

$T(n) \in$

Runtime Example \#5: Mergesort

Mergesort algorithm:
Split list in half, sort first half, sort second half, merge together Recurrence relation:

$$
\begin{aligned}
& T(1) \leq b \\
& T(n) \leq 2 T(n / 2)+c n \quad \text { if } n>1
\end{aligned}
$$

Solving recurrence:

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c n & & \\
& \leq 2(2 T(n / 4)+c n / 2)+c n & & \text { (substitution) } \\
& =4 T(n / 4)+2 c n & & \\
& \leq 4(2 T(n / 8)+c n / 4)+2 c n & & (\text { substitution) } \\
& =8 T(n / 8)+3 c n & & \\
& \leq 2^{k} T\left(n / 2^{k}\right)+k c n & & (\text { extrapolating } k>0) \\
& =n T(1)+c n \lg n & & \left(\text { for } 2^{k}=n\right)
\end{aligned}
$$

$T(n) \in$

Runtime Example \#6: Fibonacci (page 1 of 2)

Recursive Fibonacci:
int fib(n)
if $(\mathrm{n}==0$ or $\mathrm{n}==1$) return n
return fib(n-1) + fib(n-2)
Recurrence Relation: (lower bound)

$$
\begin{aligned}
& T(0) \geq b \\
& T(1) \geq b \\
& T(n) \geq T(n-1)+T(n-2)+c \quad \text { if } n>1
\end{aligned}
$$

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

where $\varphi=(1+\sqrt{5}) / 2$
Note: $\varphi^{2}=\varphi+1$

Runtime Example \#6: Fibonacci (page 2 of 2)

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

Proof: (by induction on n)
Base Case: $T(0) \geq b>b \varphi^{-1}$ and $T(1) \geq b=b \varphi^{0}$. Inductive Hypothesis: Assume $T(n) \geq b \varphi^{n-1}$ for all $n \leq k$. Inductive Step: Show that it's true for $n=k+1$.

$$
\begin{aligned}
T(n) & \geq T(n-1)+T(n-2)+c \\
& \geq b \varphi^{n-2}+b \varphi^{n-3}+c \quad \text { (by inductive hypothesis) } \\
& =b \varphi^{n-3}(\varphi+1)+c \\
& =b \varphi^{n-3} \varphi^{2}+c \\
& \geq b \varphi^{n-1}
\end{aligned}
$$

$T(n) \in$
Why? The same recursive call is made numerous times.

Example \#7: Learning from Analysis

To avoid recursive calls:

- Store base case values in a table.
- Before calculating the value for n :
- Check if the value for n is in the table.
- If so, return it.
- If not, calculate it and store it in the table.

This strategy is called memoization and is closely related to dynamic programming.

How much time does this version take?

Runtime Example \#8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example:

$$
A=\text { search me } \quad B=\text { insane method }
$$

A longest common subsequence is "same"; another is "seme".
Applications of LCS:
DNA sequencing, revision control systems, diff, ...

Runtime Example \#8: LCS (cont.)

An Algorithm and Its Analysis:

Example \#9

Find a tight bound on $T(n)=\lg (n!)$.

Review: Logarithms

$\log _{b} x$ is the exponent that b must be raised to, in order for it to equal x.

- $\lg x \equiv \log _{2} x$ (base 2 is common in CS)
- $\log x \equiv \log _{10} x$ (base 10 is common for humans)
- $\ln x \equiv \log _{e} x$ (the natural $\left.\log \right)$

Note: $\Theta(\lg n)=\Theta(\log n)=\Theta(\ln n)$ because

$$
\log _{b} n=\frac{\log _{c} n}{\log _{c} b}
$$

for constants $b, c>1$.

Asymptotic Analysis Summary

- Determine the input size.
- Express the resources (time, memory, etc.) that an algorithm requires as a function of its input size.
- Worst case
- Best case
- Average case
- Use asymptotic notation (O, Ω, Θ) to express the function simply.

Problem Complexity

The complexity of a problem is the complexity of the best algorithm to solve that problem.

- We can sometimes prove a lower bound on a problem's complexity. To do so, we must show a lower bound on any possible algorithm to solve it.
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

- Linear search takes $O(n)$ time (matching upper bound).

Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).

- Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg (n!))$?

Can You Beat $O(n \log n)$ Sort?
Chew these over:

- How many values can you represent with c bits?
- Comparing two values $(x<y)$ gives you one bit of information.
- There are n ! possible ways to reorder a list. We could number them: $1,2, \ldots, n$!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n ! numbers?

Problem Complexity

Sorting: Solvable in polynomial time, tractable Traveling Salesman Problem (TSP): In 1,290,319 km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/ Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.

Are problems in NP really in P? $\$ 1,000,000$ prize

Problem Complexity

Searching and Sorting: P, tractable Traveling Salesman Problem: NP, intractable? Kolmogorov Complexity: Uncomputable (undecidable)

FYI: The Kolmogorov Complexity of a string is the length of the shortest description of it. It can't be computed (e.g., Berry Paradox).

FYI: Also uncomputable: the Halting Problem.
See Google or Wikipedia for more information, if you're interested.

