Unit #1: Complexity Theory and Asymptotic Analysis CPSC 221: Basic Algorithms and Data Structures

Anthony Estey, Ed Knorr, and Mehrdad Oveisi

2016W2

Unit Outline

- Brief Proof Review
- Algorithm Analysis: Counting the Number of Steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given some code or an algorithm, write a formula that measures the number of steps executed by the code, as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- Know and compare the asymptotic bounds of common functions.
- Understand why—and when—to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Review: Proof by ...

Counterexample

- Show an example which does not fit with the theorem.
- ▶ Thus, the theorem is *false*.
- Contradiction
 - Assume the opposite of the theorem.
 - Derive a contradiction.
 - Thus, the theorem is *true*.
- Induction
 - Prove the theorem for a base case (e.g., n = 1).
 - Assume that it is true for all $n \le k$ (for arbitrary k).
 - Prove it for the next value (n = k + 1).
 - ▶ Thus, the theorem is *true*.

Example: Proof by Induction (Worked Example) 1/4

Theorem:

A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.

Proof:

Let $x_1x_2x_3...x_n$ be the *n* decimal digits of *x*. Let the sum of its decimal digits be

$$S(x) = \sum_{i=1}^n x_i$$

We'll prove the stronger result:

$$S(x) \bmod 3 = x \bmod 3.$$

How do we use induction?

Example: Proof by Induction (Worked Example) 2/4

Base Case:

Consider any number x with one (n = 1) digit (0-9).

$$S(x)=\sum_{i=1}^n x_i=x_1=x.$$

So, it's trivially true that $S(x) \mod 3 = x \mod 3$ when n = 1.

Example: Proof by Induction (Worked Example) 3/4

Inductive Hypothesis:

Assume for an arbitrary integer k > 0 that for any number x with $n \le k$ digits:

 $S(x) \mod 3 = x \mod 3.$

Inductive Step:

Consider a number x with n = k + 1 digits:

 $x = x_1 x_2 \dots x_k x_{k+1}.$

Let z be the number $x_1x_2...x_k$. It's a k-digit number; so, the inductive hypothesis applies:

 $S(z) \mod 3 = z \mod 3.$

Example: Proof by Induction (Worked Example) 4/4 Inductive Step (continued):

$$x \mod 3 = (10z + x_{k+1}) \mod 3 \qquad (x = 10z + x_{k+1})$$

= $(9z + z + x_{k+1}) \mod 3$
= $(z + x_{k+1}) \mod 3 \qquad (9z \text{ is divisible by } 3)$
= $(S(z) + x_{k+1}) \mod 3 \qquad (inductive hypothesis)$
= $(x_1 + x_2 + \dots + x_k + x_{k+1}) \mod 3$
= $S(x) \mod 3$

QED (quod erat demonstrandum: "what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID.

Consider the data that you need to store.

Consider the operation.

Consider the possible data structures.

Does it matter which data structure we use?

Efficiency

Suppose we have two or more algorithms that each solve the same problem.

- Some measure of *efficiency* is needed to determine which algorithm is "better".
- Complexity theory addresses the issue of how *efficient* an algorithm is.
- Suggest some qualities or metrics that we can measure, count, or compare in order to determine the efficiency of an algorithm.

Analysis of Algorithms

- The analysis of an algorithm can give insight into two important considerations:
 - How long the program runs (time complexity or runtime)
 - How much memory it uses (space complexity)
- Analysis can provide insight into alternative algorithms.
- The *input size* is indicated by a non-negative integer n (but sometimes there are multiple measures of an input's size).
- Running time can be summarized—and represented—by a real-valued *function* of *n* such as:

▶
$$T(n) = 4n + 5$$

- $T(n) = 0.5n \log n 2n + 7$
- $T(n) = 2^n + n^3 + 3n$

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

n =	10
log n	1ps
п	10ps
n log n	10ps
n ²	100ps
2 ⁿ	1ns

nanosecond (ns) = one-billionth of a second

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

<i>n</i> =	10	100	
log n	1ps	2ps	
п	10ps	100ps	
n log n	10ps	200ps	
n ²	100ps	10ns	
2 ⁿ	1ns	1Es	

nanosecond (ns) = one-billionth of a second

Exasecond (Es) = 32 billion years

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

n =	10	100	1,000	
log n	1ps	2ps	3ps	
п	10ps	100ps	1ns	
n log n	10ps	200ps	3ns	
n ²	100ps	10ns	$1 \mu { m s}$	
2 ⁿ	1ns	1Es	10^{289} s	

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

n =	10	100	1,000	10,000	
log n	1ps	2ps	3ps	4ps	
п	10ps	100ps	1ns	10ns	
n log n	10ps	200ps	3ns	40ns	
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	
2 ⁿ	1ns	1Es	10^{289} s		

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

n =	10	100	1,000	10,000	10 ⁵	
log n	1ps	2ps	3ps	4ps	5ps	
п	10ps	100ps	1ns	10ns	100ns	
n log n	10ps	200ps	3ns	40ns	500ns	
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	
2 ⁿ	1ns	1Es	10^{289} s			

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

<i>n</i> =	10	100	1,000	10,000	10 ⁵	10 ⁶	
log n	1ps	2ps	3ps	4ps	5ps	брs	
п	10ps	100ps	1ns	10ns	100ns	1μ s	
n log n	10ps	200ps	3ns	40ns	500ns	6 μ s	
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	
2 ⁿ	1ns	1Es	10^{289} s				

Suppose a computer executes 1 operation (op) per picosecond (i.e., trillionth of a second: 10^{-12} s.). Here's how long it would take to run T(n) operations, where T(n) is a function of the input size n (e.g., $T(n) = \log n$):

<i>n</i> =	10	100	1,000	10,000	10 ⁵	10 ⁶	10 ⁹
log n	1ps	2ps	3ps	4ps	5ps	брs	9ps
п	10ps	100ps	1ns	10ns	100ns	$1 \mu { m s}$	1ms
n log n	10ps	200ps	3ns	40ns	500ns	6 μ s	9ms
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	1week
2 ⁿ	1ns	1Es	10 ²⁸⁹ s				

```
// Linear Search
find(key, array):
   for i = 0 to (length(array) - 1) do
        if array[i] == key
            return i
        return -1
```

1) What's the input size *n*?

```
// Linear Search
find(key, array):
   for i = 0 to (length(array) - 1) do
        if array[i] == key
            return i
   return -1
```

2) Should we assume a worst-case, best-case, or average-case scenario for running an input of size *n*?

```
// Linear Search
find(key, array):
   for i = 0 to (length(array) - 1) do
        if array[i] == key
            return i
   return -1
```

3) How many lines are executed as a function of n in the worst-case?
 T(n) =

Is *lines* the right unit?

The number of lines executed in the worst-case is:

$$T(n)=2n+1$$

- Does the "1" matter?
- Does the "2" matter?

Big-O Notation

Assume that for every integer n, $T(n) \ge 0$ and $f(n) \ge 0$.

 $T(n) \in O(f(n))$ iff there are positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n \geq n_0$.

Meaning: "T(n) grows no faster than f(n)"

Asymptotic Notation

▶ Big-O: $T(n) \in O(f(n))$ iff there are positive constants c and n_0 such that $T(n) \leq cf(n)$ for all $n \geq n_0$.

Big-Omega: T(n) ∈ Ω(f(n)) iff there are positive constants c and n₀ such that T(n) ≥ cf(n) for all n ≥ n₀.

▶ Big-Theta: $T(n) \in \Theta(f(n))$ iff $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.

Asymptotic Notation (cont.)

▶ Little-o: $T(n) \in o(f(n))$ iff for **any** positive constant *c*, there exists n_0 such that T(n) < cf(n) for all $n \ge n_0$.

▶ Little-omega: $T(n) \in \omega(f(n))$ iff for **any** positive constant *c*, there exists n_0 such that T(n) > cf(n) for all $n \ge n_0$.

Examples

$$10,000n^2 + 25n \in \Theta(n^2)$$

$$10^{-10}n^2 \in \Theta(n^2)$$

 $n\log n \in O(n^2)$

Examples (cont.)

 $n \log n \in \Omega(n)$

$$n^3+4 \in o(n^4)$$

 $n^3 + 4 \in \omega(n^2)$

```
// Linear Search
find(key, array):
  for i = 0 to (length(array) - 1) do
      if array[i] == key
        return i
      return -1
```

4) How does T(n) = 2n + 1 behave asymptotically? What is the appropriate order notation? (*O*, *o*, Θ , Ω , ω ?)

Asymptotically Smaller?

$$n^3 + 2n^2$$
 versus $100n^2 + 1000$

Asymptotically Smaller?

 $n^{0.1}$ versus $\log_2 n$

 $n^{0.1}$ versus $\log_2 n$

Typical Asymptotics

Tractable

- ► Constant: Θ(1)
- ► Logarithmic: $\Theta(\log n)$ $(\log_b n, \log n^2 \in \Theta(\log n))$
- ► Poly-Log: $\Theta(\log^k n)$ $(\log^k n \equiv (\log n)^k)$
- Linear: $\Theta(n)$
- Log-Linear: Θ(n log n)
- Superlinear: $\Theta(n^{1+c})$ (c is a constant > 0)
- Quadratic: $\Theta(n^2)$
- Cubic: $\Theta(n^3)$
- Polynomial: $\Theta(n^k)$ (k is a constant)

Intractable

• Exponential: $\Theta(c^n)$ (c is a constant > 1)

Sample Asymptotic Relations

- ▶ $\{1, \log n, n^{0.9}, n, 100n\} \subset O(n)$
- $\{n, n \log n, n^2, 2^n\} \subset \Omega(n)$
- $\{n, 100n, n + \log n\} \subset \Theta(n)$
- $\blacktriangleright \{1, \log n, n^{0.9}\} \subset o(n)$
- $\{n \log n, n^2, 2^n\} \subset \omega(n)$

Analyzing Code

- Single operations: constant time
- Consecutive operations: sum of the operations' times
- Conditionals: condition time plus the maximum (for worst-case analysis) of the branch times
- Loops: sum of the loop body times
- Function call: time for the function

Above all, use common sense!

Runtime Example #1

```
for i = 1 to n do
for j = 1 to n do
sum = sum + 1
```

Runtime Example #2

```
i = 1
while i < n do
    for j = i to n do
        sum = sum + 1
    i++</pre>
```

Runtime Example #3

```
i = 1
while i < n do
    for j = 1 to i do
        sum = sum + 1
        i += i</pre>
```

Runtime Example #4

Recursion almost always yields a recurrence relation:

$$T(1) \le b$$

 $T(n) \le c + T(n-1)$ if $n > 1$

Solving the recurrence:

$$T(n) \le c + c + T(n-2) \qquad (\text{substitution})$$

$$\le c + c + c + T(n-3) \qquad (\text{substitution})$$

$$\le kc + T(n-k) \qquad (\text{extrapolating } k > 0)$$

$$= (n-1)c + T(1) \qquad (\text{for } k = n-1)$$

$$\le (n-1)c + b$$

 $T(n) \in$

Runtime Example #5: Mergesort

Mergesort algorithm:

Split list in half, sort first half, sort second half, merge together Recurrence relation:

$$T(1) \le b$$

 $T(n) \le 2T(n/2) + cn$ if $n > 1$

Solving recurrence:

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2(2T(n/4) + cn/2) + cn \quad (substitution)$$

$$= 4T(n/4) + 2cn$$

$$\leq 4(2T(n/8) + cn/4) + 2cn \quad (substitution)$$

$$= 8T(n/8) + 3cn$$

$$\leq 2^{k}T(n/2^{k}) + kcn \quad (extrapolating k > 0)$$

$$= nT(1) + cn \lg n \quad (for 2^{k} = n)$$

$$T(n) \in$$

Runtime Example #6: Fibonacci (page 1 of 2)

Recursive Fibonacci:

```
int fib(n)
    if( n == 0 or n == 1 ) return n
    return fib(n-1) + fib(n-2)
```

Recurrence Relation: (lower bound)

$$T(0) \ge b$$

$$T(1) \ge b$$

$$T(n) \ge T(n-1) + T(n-2) + c \quad \text{if } n > 1$$

Claim:

$$T(n) \ge b\varphi^{n-1}$$

where $\varphi = (1 + \sqrt{5})/2$ Note: $\varphi^2 = \varphi + 1$

Runtime Example #6: Fibonacci (page 2 of 2) Claim:

$$T(n) \ge b\varphi^{n-1}$$

Proof: (by induction on n) Base Case: $T(0) \ge b > b\varphi^{-1}$ and $T(1) \ge b = b\varphi^{0}$. Inductive Hypothesis: Assume $T(n) \ge b\varphi^{n-1}$ for all $n \le k$. Inductive Step: Show that it's true for n = k + 1.

$$T(n) \ge T(n-1) + T(n-2) + c$$

$$\ge b\varphi^{n-2} + b\varphi^{n-3} + c \qquad \text{(by inductive hypothesis)}$$

$$= b\varphi^{n-3}(\varphi + 1) + c$$

$$= b\varphi^{n-3}\varphi^2 + c$$

$$\ge b\varphi^{n-1}$$

 $T(n) \in$ Why? The same recursive call is made numerous times. Example #7: Learning from Analysis

To avoid recursive calls:

- Store base case values in a table.
- Before calculating the value for *n*:
 - Check if the value for *n* is in the table.
 - If so, return it.
 - If not, calculate it and store it in the table.

This strategy is called *memoization* and is closely related to *dynamic programming*.

How much time does this version take?

Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example:

A = search me B = insame method

A longest common subsequence is "same"; another is "seme".

Applications of LCS:

DNA sequencing, revision control systems, diff, ...

Runtime Example #8: LCS (cont.)

An Algorithm and Its Analysis:

Example #9

Find a tight bound on $T(n) = \lg(n!)$.

Review: Logarithms

 $\log_b x$ is the exponent that *b* must be raised to, in order for it to equal *x*.

- $\lg x \equiv \log_2 x$ (base 2 is common in CS)
- $\log x \equiv \log_{10} x$ (base 10 is common for humans)
- $\ln x \equiv \log_e x$ (the natural log)

Note: $\Theta(\lg n) = \Theta(\log n) = \Theta(\ln n)$ because

$$\log_b n = \frac{\log_c n}{\log_c b}$$

for constants b, c > 1.

Asymptotic Analysis Summary

- Determine the input size.
- Express the resources (time, memory, etc.) that an algorithm requires as a function of its input size.
 - Worst case
 - Best case
 - Average case
- Use asymptotic notation (O, Ω, Θ) to express the function simply.

Problem Complexity

The **complexity of a problem** is the complexity of the best algorithm to solve that problem.

- We can sometimes prove a lower bound on a problem's complexity. To do so, we must show a lower bound on any possible algorithm to solve it.
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

- Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).

- Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg(n!))$?

Can You Beat $O(n \log n)$ Sort?

Chew these over:

- How many values can you represent with c bits?
- Comparing two values (x < y) gives you one bit of information.
- ► There are n! possible ways to reorder a list. We could number them: 1, 2, ..., n!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n! numbers?

Problem Complexity

Sorting: Solvable in polynomial time, tractable Traveling Salesman Problem (TSP): In 1,290,319 km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.

Are problems in NP really in P? \$1,000,000 prize

Problem Complexity

Searching and Sorting: P, tractable Traveling Salesman Problem: NP, intractable? Kolmogorov Complexity: Uncomputable (undecidable)

FYI: The Kolmogorov Complexity of a string is the length of the shortest description of it. It can't be computed (e.g., Berry Paradox).

FYI: Also uncomputable: the Halting Problem.

See Google or Wikipedia for more information, if you're interested.