
CPSC 221 Binary Trees Page 1

A (Very) Brief Introduction to Binary Heaps and Binary Trees

A Primer for Lab 4

Full Binary Tree: Each node has exactly 0 or 2 children. Each
internal node has exactly 2 children; each leaf has 0 children.

Complete Binary Tree: A full binary tree where all leaves have the
same depth.

Nearly Complete Binary Tree: All leaves on the last level are
together on the far left side, and all other levels are completely filled.
(See the next slide.)

CPSC 221 Binary Trees Page 2

A minimum binary heap (LHS below) is a nearly complete
binary tree such that the data in every node is less than or equal to
the data in each of its child nodes and the node’s left and right sub-
trees are also minimum heaps. (There’s also a maximum binary
heap (RHS below).)

7
5 7

4 3 4

2
5 7

5 7 8

CPSC 221 Binary Trees Page 3

It is important to realize that two binary heaps can contain the
same data but the data may appear in different positions in the
heap:

2
5 7

5 7 8

2
5 5

7 7 8

Both of the minimum binary heaps above contain the same data:
2, 5, 5, 7, 7, 8. Even though both heaps satisfy all the properties
necessary of a minimum binary heap, the data is stored in different
positions in the tree.

CPSC 221 Binary Trees Page 4

The fact that a binary heap is a nearly complete binary tree allows
us to represent the heap using an array. Hence we have a
contiguous rather than linked structure to represent the heap.

D
F J

H K L
D F J H K L

We must now determine a way of navigating the heap. If the heap
were represented as a linked structure, each node would have a
pointer to its left and right child. Using the array representation, a
node with index k in the array has:

index of left child: 2k + 1 index of parent: floor((k-1)/2)

index of right child: 2k + 2

CPSC 221 Binary Trees Page 5

Example of a Binary Tree Node in C++

We will assume that a typedef statement has defined Item_type to
be the type of data to be stored in the tree. Each node contains an
item, a pointer to the left subtree and a pointer to the right subtree:
typedef string Item_type;

struct BNode
{

Item_type item; // may have many data fields
BNode* left;
BNode* right;

};

You can also use a class.

To begin, we will write a makeNode function to create a new BNode
as needed. Note the default assignments in the argument list …

CPSC 221 Binary Trees Page 6

Bnode * makeNode(const Item_type& item,
Bnode * leftChild = NULL, Bnode * rightChild = NULL)

// PRE: item is valid, leftChild points to a node or is
// NULL, rightChild points to a node or is NULL
// POST: a new node is created and its address is
// returned

{

Bnode * temp;

temp = new Bnode;

temp->item = item;

temp->left = leftChild;

temp->right = rightChild;

return temp;

}

