

1

CPSC 221: Theory Assignment 2

Posted: March 5, 2017 @ 23:55 Due: Thursday, March 16, 2017 at 23:59

History of Non-Trivial Changes to this Document: Updated on March 15 @ 18:10

- Mar. 15 @ 18:10: For Q11, we’re OK with using induction on the height of the tree instead of on
the number of nodes. The number of nodes and the height are closely related.
- Mar. 15 @ 01:10: Due to the timing mismatch of lectures among the 3 sections, we’re going to
move Q9 (hashing), Q10 (hashing), and Q12 (preorder/inorder) to Theory Assignment #3.
- Mar. 8 @ 23:15: Use “theory2” for the handin folder.
- Mar. 8 @ 13:25: For Q3, use k > 1.

Submission Instructions

Submit your solutions using handin. You can write your solutions by hand and scan the
pages or take pictures of them with your phone (but organize them according to the next
paragraph); or better still: use a word processing package to typeset your solutions and
produce a .pdf file.

Important: (1) Clearly label the question number of any file you submit. (2) Don’t
submit sideways or upside-down photos; these are a pain for the markers to work with.
Use PDF to create a single document that can be read in the regular vertical way. Pretend
that the marker is going to print your document on 8.5” x 11” paper, and will read down
the page(s) in the normal way. (3) If using a photo, please don’t use a high resolution
because it can quickly consume a lot of space and upload/download time. (4) Be sure to
include your name, CS userid, partner’s name (if applicable), and partner’s CS userid in
your file. Two marks for this assignment will be awarded for complying with these rules.

To Submit: Copy the files that contain your solutions to the directory
~/cs221/theory2 in your home directory on an undergraduate machine. (You may
have to create this directory using mkdir ~/cs221/theory2.) Then, run:
handin	cs221	theory2 from your home directory.

We encourage you to work in pairs. Be sure to include the names and ugrad CS login
IDs of both partners on your solution, but only one partner should submit the
assignment.

Late Submission Policy: The late penalty is 3% per hour (or portion thereof), with no
late assignments being accepted after 9 hours. For example, if you hand in your program
at 02:10 AM on the morning after the due date, then this is 3 hours late; so, you would
lose 3 * 3% = 9% of the maximum possible mark.

2

Part 1: Complexity

1. Use contradiction to prove that x5 is not O(x2).

2. Prove that 13 + 23 + 33 + ... + n3 is (n4).

Part 2: Recurrences

3. Consider the following recurrence relation:

E1 = 0
Ek = Ek – 1 + k + 1 for all integers k > 1

a. Use substitution (at each iteration) to find an explicit formula for the

sequence.
b. Use induction to verify the correctness of the formula.

Part 3: Quicksort

4. Use Jon Bentley’s Quicksort algorithm (see the lecture notes) to sort the following

array:

5 3 2 8 1 0 6 7 4

However, to choose the pivot element, don’t simply pick the first element of the partition
being sorted. Instead, use the median-of-3 rule, that is, for your pivot element for the
current partition, choose the median of: {first element, middle element, last element} where
the middle element of this partition is defined as follows:

If i is the subscript of the first element, and j is the subscript of the last element, then the
subscript of the middle element is k = ceiling((i + j) / 2).

Thus, for the first call, the subscripts are i = 0, j = 8, and k = ceiling((0 + 8) / 2) = 4;
therefore, we take the median of the three values 5, 1, and 4—which in this case is the
value 4. This means the last element (4) gets swapped with the first element (5) before
starting the Quicksort algorithm. Note that this operation is done in O(1) time and does
not affect the complexity of Quicksort.

For your answer to this question, show the results of each call to qsort, and what the next
call would be. In other words, trace the execution. It’s up to you as to whether you show
the trace table or not.

3

Part 4: Heaps

5. a) Convert the following unordered array to a minimum heap using the Heapify (build

heap in O(n) time) algorithm. Show the steps as you progress.

E A D C G B F I H

 b) Perform Heapsort on the resulting heap in (a). Show your work, as you progress.

6. Consider a heap H with n keys in it. Give an efficient algorithm for reporting all the

keys in H that are less than or equal to a given query key q (which is not necessarily in
H). For example, if the heap contains n = 7 keys, say the elements 2, 4, 6, 8, 10, 20,
and 30, and if q=9, then we need to report elements 2, 4, 6, and 8. The keys do not
have to be reported in sorted order. Your algorithm should run in O(k) time, where k
is the number of keys reported.

Part 5: Program Correctness and Loop Invariants

7. The following while loop implements a way to multiply two numbers that was

developed by the ancient Egyptians:

Algorithm: (Note that the indentations describe the code blocks that apply to the
scope of the while and if statements.)

 [Pre-condition: A and B are positive integers, x = A, y = B, and product = 0.]

 while (y != 0)
 r = y mod 2
 if (r = 0)
 x = 2 * x
 y = y / 2
 if (r =1)
 product = product + x
 y = y – 1

[Post-condition: product = A * B]

Prove the correctness of this loop with respect to its pre- and post-conditions by
using the loop invariant:
 “x*y + product = A * B”.

4

8. Use a loop invariant to prove that when the following algorithm terminates, pow is
equal to an :

i = 1
pow = 1
while (i ≤ n) {
 pow = pow * a
 i = i + 1
}

Part 6: Hash Functions

9. [Moved to Theory Assignment #3] Which of the following 3 choices would make the

best hash function for an 11-digit account number (assuming a random digit between 0
and 9 is assigned for each of the 11 positions)? Briefly, justify your answer by
analyzing and comparing the 3 hash functions given below: hi(k). We’ll use open
addressing with 1000 array cells, and we’ll use linear probing to resolve collisions.
There are 250 keys to hash.

a) Hash function h1(k) = floor(sqrt(k)) % 1000

b) Take the 4 digits in the positions 2, 4, 6, and 8 (offsets start at 0, like a C++
array); call them a, b, c, and d, respectively; concatenate them; and then compute
h2(k) = (abcd) % 1000. Note: abcd does not mean a*b*c*d.

c) h3(k) = ((the number of zeroes in k) + (the number of ones in k) + (the number
of twos in k) + ... + (the number of nines in k)) % 1000.

10. [Moved to Theory Assignment #3] Using a hash table with 11 locations and the hash

function h(k) = k % 11, show the hash table that results when the following integers are
inserted in this order:

26, 42, 5, 44, 92, 59, 40, 36, 12, 60, 80

… if we assume that collisions are resolved using:

a) Linear probing
b) Quadratic probing
c) Double hashing with the following secondary hash function:

h2(x) = (2x) % 11, if this expression is non-zero
h2(x) = 1, if the expression in the previous line is zero

5

Part 7: Trees and Induction

11. [Update: We’ll accept a solution that uses induction on the height of the tree.] A

ternary tree is either empty or consists of a node called the root and three ternary trees
(called the left, middle, and right subtrees). Prove that a ternary tree of height h has at
most (3h + 1 – 1)/2 nodes, by using induction on the number of nodes in in the tree. Note
that the empty tree has height –1.

12. [Moved to Theory Assignment #3] If the preorder visitation of nodes (containing one-
character variables and operators) in a binary tree is the following sequence:
a+bc+*def then:

a) Draw its expression tree.

b) What is its inorder sequence?

