Unit #9: Graphs
CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

» Topological Sort: Sorting vertices
» Graph ADT and Graph Representations

» Graph Terminology

» More Graph Algorithms

» Shortest Path (Dijkstra’s Algorithm)
» Minimum Spanning Tree (Kruskal's Algorithm)

use :
VeSS . drack
TeS L. A LhR
“sw\\-k ?S“ . \?\lowvcub cv.\QM

2 /40

Learning Goals

» Describe the properties and possible applications of various
kinds of graphs (e.g., simple, complete), and the relationships
among vertices, edges, and degrees.

» Prove basic theorems about simple graphs (e.g. handshaking
theorem).

» Convert between adjacency matrices/lists and their
corresponding graphs.

» Determine whether two graphs are isomorphic.
» Determine whether a given graph is a subgraph of another.
» Perform breadth-first and depth-first searches in graphs.

» Execute Dijkstra’s shortest path and Kruskal's minimum
spanning tree algorithms on a given graph.

3/40

Sorting Total Orders

:‘-\N Yriow Sox ke

Selolololo

C N\MV‘lVl'Sc‘i st((—u

@—®

PR means
¢
o) x before y
XQ
A
What property does the comparisoR-based sorting algorithm need

' ?
to achieve? Cov tuavy b degng § Alere is o Aiveckod path betorew

- 1w
LD Mk tked parh cgrEm MYy

[

L nﬂn‘”\-&v\(— S

4 /40

Partial Order: Getting Dressed

@—

means
x before y

el &y, oAYS lev\S—\\a'\V\-kS‘)

1 kot ovdor (&ox o8
EX”\W'@Q’“ k \wevs“\wox’('()')‘ $OC\<S \S\’\'l\"t \ QQM S \\"’?9"t

5/ 40

Topological Sort

AYel oA Aechic
| . Y
A topological sort is a total order of the vertices of a graph
G = (V, E) such that if (u, v) is an edge of G then u appears

before v in the order. —_—
. M \J) . w“w 4
o Skank \Mlk.t’\ ON \IQ ¥ AR \“.‘k\'p e \\4@;“4\(4% R&Q.S (A >

, ¢

A ,

>< 7 ® "'—%7 a W 1
™ privt "ol A e N QA’X’S Nrown A

6 / 40

Topological Sort Algorithm

\n A\QbYOQ (\’3 =3

o Ut deyvea (W)=2
’ \)\.//

-> [3
~—— o.w"'.\m:a‘é.‘LQS
2w

n — ‘HVXVP\.CQS

1. Find each vertex's in-degree (# of inbound &dges) . 0l

"
2
) _ | 7 :
E-c . While there are vertices remaining . o w) . / M,
':?l' 2.1 Pick a vertex with in-degree zero and output it 5 5 WU,
Ky —

2.2 Reduce the in-degree of all vertices it has an edge t‘b? “u
2.3 Remove it from the list of vertices \ -

W
: H G : -
Runtime? —‘E)(l;/\\ x &) (o3 02"\\ L 6(0) - dagvee -
'9"(V)Q_> /—7'.@ O (vl)
- - ? ()
YA N bU\‘\‘&QS“U
DL < N
9 o(w?)

QOSS.\\»QA £ oé "AX-S

7/ 40

Topological Sort Algorithm |
QUEUE
——

vev e wikh 1v-deqeee= O
Ahort hane ok beenr eut @M—E

. . (
1. Find each vertex's in-degree B (u) -olw)

2. Initialize a queue to contain all in-degree zero vertices

3. While there are vertices in the queue
" & 3.1 Dequeue a vertex v (with in-degree zero) and output it ©)

3.2 Reduce the in-degree of all vertices v has an edge to & ©{1) .
= _ _(o\' on¢é 1teY.
3.3 Enqueue any of these th;)(now have in-degree zero

. " (
Runtime? e(y)ﬂo(m\.*-e(h\ (1) J 4w)+ B (v) . -
S (surdtay (V) o , \ oy |

onp v U Ifabus

-Q-Cv\) —
) oV&VqU .
oukpat: 8w+ \m) PR X
paxh My Yy N Yy e T @
Ay @ L2°

-+ owt— derkee (v)_= Ok W)

8 / 40

o4 outdanret (V) + ekdgyvan (oYt -

Graph ADT

Graphs are a formalism useful for representing relationships

between things. alvl=w
A graph is represented as a pair of sets: G = (V/, E)
_ _ 9 Ll (s w
» V is a set of vertices: {vi,vo,...,vp}.
» E is a set of edges: {e1,e,...,em} where each ¢ is a pair of

vertices: e, € V X V. Mo ed Fraph

V = {/Q,EB,(:}
E= {(/Q,EB),(EB,/Q),((f,EB)}

Operations may include:
> create (with a certain number of vertices)
> insert/delete a given edge/vertex
> iterate over vertices adjacent to a given vertex
» ask if an edge exists connecting two given vertices

)
7

9/40

Graph Applications

Storing things that are graphs by nature
» Road networks

» Airline flights

» Relationships between people, things

» Room connections in Hunt the Wumpus
Compilers

» call graph - which functions call which others

» control flow graph - which fragments of code can follow which
others

» dependency graphs - which variables depend on which others
Others

> circuits, class hierarchies, meshes, networks of computers, ...

10/ 40

Graph Representations: Adjacency Matrix

A |V| x |V| array A where A[u,v] =1 if and only if (u,v) € E.

1 2 3 Ol V1 XN wmakviy
10|10 d
21110]|0 l : (

M |77
2LV]O
Runtime: (M'\b A
% » iterate over vertices B(w) I
. M N
— » iterate over edges ol nl)

— » iterate over vertices adj. to a vertex B (w)
¥ » check whether an edge exists ©())

Memory: o (\qm)

11/ 40

Graph Representations: Adjacency List

An array L of |V/| lists. L[u] contains v if and only if (u,v) € E.

oul %c.-.'\wb M}A_g: '(v\cov“l.\(/la Qf"f$=
1 [=3 [A @B

2 | A2 T h 2| e T
3) @__7(2.\jL|| \34/'-—_—"

Runtime:
1 » Iterate over vertices © (n)
* » iterate over edges ©lnyg =)

X » jterate over vertices adj. to a vertex m: Ol out-degr g g (""\)
— » check whether an edg}\exists !

Memory: (M V) o (ovu—-hgk LQ(U\\)

&(na W)

12 /40

Directed vs. Undirected Graphs

In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):
A C

Vertices u and v are adjacent if (u,v) € E.

What property do adjacency matrices of undirected graphs have?

Summet vic k{«x‘ﬁ'kclkfv&xl
AN

13 /40

Weighted Graphs

Each edge has an associated weight or cost.

Clinton

20
.\. Mukilteo

Kingston

'&. Edmonds

Bainbridge 35

Seattle
60

Bremerton

How can we store weights in an adjacency matrix?

In an adjacency list?
ABQTB—')\’/EB—’) - -
2.‘61*("‘5'3

14 / 40

Connectivity

Connected: undirected and there is a path be-

tween any two vertices.
k - ceugcf iy (k-1)

M Biconnected: "connected even after removing one
vertex.

Strongly connected: directed and there is a path
from any one vertex to any other.

Weakly connected: directed and there is a path
between any two vertices, ignoring direction.

Complete graph: edge between every pair of ver-
tices

15 / 40

Isomorphism and Subgraphs

Isomorphic: Two graphs are isomorphic if they have the same
structure (ignoring vertex names).

>N e

G; = (V41, E1) is isomorphic to Gy = (V», Ep) if there is a
one-to-one and onto function f : V3 — V5 such that (u,v) € E; iff

N\
(f(u)v f(v)) € b. i\"bec—’rib"l <« ! %&‘w_\m

Subgraph: One graph is a subgraph of another if it is some part of

the other graph. @

G; = (V1, E1) is a subgraph of G, = (V,, E) if V4 C V, and

Ei C E5.
Note: We sometimes say H is a subgraph of G if H is isomorphic

to a subgraph (in the above sense) of G.

16 / 40

Degree

The degree of a vertex v € V is denoted deg(v) and represents the
number of edges incident on v. (An edge from v to itself

contributes 2 towards the degree.)

X (L,(B' (V‘): S-
Handshaking Theorem:
If G =(V,E) is an undirected graph, then

> deg(v) =2|E|

veV
4 oM
s ‘}3 kS ')\
o €

9""‘2§$

Corollary

An undirected graph has an even number of vertices of odd degree.

17 / 40

Degree/Handshake Example

The degree of a vertex v € V is the number of edges incident on v.

Let's label each vertex with its degree and calculate the sum...
‘ 2

N A

/Y 2
\ 2

Al edng ek 1 bokes 4o 32422 & add

a_u&(t;\h‘l’
SV\M - \(-(

1E1 - F

18 / 40

Degree for Directed Graphs

~ .2 .
éOB (‘V) 2 /7\,\ JJ.:) (\l\ =$

The in-degree of a vertex v € V (denoted deg™ (v)) is the number
of edges coming in to v.

The out-degree of a vertex v € V (denoted deg™(v)) is the
number of edges going out of v.

So, deg(v) = deg'(v) + deg—(v), and

Z deg™ (v) = Z degt(v) = % Z deg(v). = | &|

veV /(\ veV {\ VEV/\\
B Woad ¢ B cail
S FaES Huwadslrails
Lag 0 Wead

Qc)u‘)?~

19 /40

Trees as Graphs
n= Hd vecetea s

Tree: A tree is a connected, acyclic, undirected graph.

>N

ma‘-‘u:a{xs = V\/l

Rooted tree: A rooted tree is a tree with a single distinguished
vertex called the root.

D AN AN

We can imagine directing the edges of a rooted tree away from the
root, to form a connected, acyclic, directed graph, in which there is
a path from the root to every vertex.

20 / 40

Directed Acyclic Graphs (DAGs)

Yd&YQC{po\
DAGs are directed graphs with no cycles.

We can topo-sort DAGs.

21 /40

Single Source, Shortest Path

Given a graph G = (V, E) and a vertex s € V, find the shortest
path from s to every vertex in V.

9{“‘62_‘ 4 g = —HF,(&XzS

Many variations: 9
Y /

» weighted vs. unweighted

» no cycles vs. cycles allowed

> positive weights vs. negative weights allowed

22 /40

Unweighted Single-Source Shortest Path Problem

ORSkawcg = B ady s . ¢ <« AOA A
BreadthFirstSearch(G, s) L ‘:S-L‘-@ Y_A_ll‘] l@,‘-\fﬁjl&lﬂ \C"\'ﬂ

c
Q.enqueue([s,0]) @ 6)‘-2‘)‘['6\23_“
while Q is not empty / ©
[v,d] = Q.dequeue() ~ \\;
1f v i1s unmarked C/9\ @\?‘
fvwdd _5 mark v with distance d { &
- D
dist=v for each edge (v,w) ®1 QTS T
Q.enqueue([w,d+1]) 4':/ T we canm :;f",k Xo

N\a F* CN K v Lae_ s\ v hesh
(Replace the queue with a stack to get depth-first search.) ¢+ Lesm

23 /40

Weighted Single-Source Shortest Path

e wex S da
Assumes edge weights are non-negative. \,J,.,D\ 7

us PRIGR\TY QUEUC wily Priexiay =

.. : : i . cuvravt i vka ca
Dijkstra’s algorithm is a greedy algorithm (makes the current

best choice without considering future consequences). fcomn s Seuvan

Intuition: Find shortest paths in order of length.
» Start at the source vertex (shortest path length = 0)

» The next shortest path extends some already discovered
shortest path by one edge.

» Find it (by considering all one-edge extensions) and repeat.

o

|
l | ‘
o ?@\>B Ve ! "75’1%\)9; Qures Ay BB D
@ >/ A/ 7 ¢ J &llﬁlk‘,
ENIOK SR owt : e 31 g T

The Trouble with Negative Weight Cycles

A B S
A(SG‘D%C .. [

S Mo shotie sk @‘\L‘q

What's the shortest path from A to B (or C or D or E)?

25 / 40

Intuition in Action

26 / 40

Dijkstra’s Algorithm Pseudocode

X2 kg N I Skmne

> |nitialize tho each vertex to oo

» |nitialize the dist to the source to 0

» While there are unmarked vertices left in the graph

» Select the unmarked vertex v with the lowest dist

» Mark v with distancédist. v Al skane
> For each edge (v, w) =— Ao\) wmasaciy: 0(w) Aj.Usk-O o%-‘)(“))
> dist(w) = min {dist(w), dist(v) + weight of (v, w)}
B, 03 & 2

Aok (u) =D o
v_Et 5w | < wPAR

[. (-
dist (W)= st \Aj
wallet ——

A skoner &Y= 3

27 / 40

Dijkstra’s Algorithm in Action

vertex A B C D E F G H

dist | 4 h |o Kl 3 9
distance | 3 o Y
S-ke(,\
Step

28 / 40

The Cloud Proof

v v v Y

>

o vuyuu'uz \wi‘g‘m& S

= szmy(\,((\z M (3)

d S‘('(‘:Q 2 A+ i)
/‘\S'W\UL Vil sxa cheosa

N , , _ Wivmark oy Yeykex Wi
Assume Dijkstra’s algorithm finds the correct shortest path to

the first k vertices it visits (the cloud). Matlest sk
But it fails on the (k + 1)st vertex u.

So there is some shorter path, P, from s to u.

Path P must contain a first vertex y not in the cloud.

But since the path, Q, to u is the shortest path out of the
cloud, the path on P upto y must be at least as long as Q.

Thus the whole path P is at least as long as (). Contradiction

(What did | use in that last step?)

29 / 40

Data Structures for Dijkstra’s Algorithm
Priovloy quomr .. iwplevaac i wsing Vuap

“5@: Select the unknown vertex with the lowest dist.
findMin/deleteMin
/ 5(0ey)

\m__@mes: dist(w) = min {dist(w), dist(v) + weight of (v, w)}

1 decreaseKey (i.e., change a key and fix the heap)

fov 12 w\zko\ find by nah\es(dictionary lookup)

(v W cs‘("\ws. BWK((A(. .9(9.,3,4)
Qx«(’i\"b

Runtime: (adjacency matrix or adjacency list?)

o (\44\1) Ueq L.) % wkva exergad :

5 ((\44 W) 9~°3‘4“ v'l\

%_\,\\o\ oukae Qws Svem
e v 4= S Al e%v‘)o

Fibonaccl Heaps

» Very cool variation on Priority Queues
» Amortized O(1) time for decreaseKey.
» O(log n) time for deleteMin

Dijkstra's uses | V| deleteMins and |E| decreaseKeys
Runtime with Fibonacci heaps:

B(V\Qo%m <8 W\\

31/ 40

Spanning Tree

Spanning tree: a subset of the edges from a connected graph that

» touches all vertices in the graph (spans the graph) and

» forms a tree (is connected and contains no cycles).

Minimum spanning tree: the spanning tree with the least total
edge dist.

32 /40

Kruskal's Algorithm for Minimum Spanning Trees

Yet another greedy algorithm:

» Start with an empty tree T

» Repeat: Add the minimum weight edge to T unless it forms
a cycle.

33 /40

Kruskal's Algorithm in Action (1/5)

34 /40

Kruskal's Algorithm in Action (2/5)

35 /40

Kruskal's Algorithm in Action (3/5)

36 / 40

Kruskal's Algorithm in Action (4/5)

37 /40

Kruskal's Algorithm Completed (5/5)

38 /40

Proof of Correctness

Part |: Kruskal's finds a spanning tree. Why?

Part |I: Kruskal's finds a minimum one.

Proof by contradiction.

Assume another spanning tree, T, has lower cost than Kruskal's
tree K. (Pick T to be as similar to Kruskal's as possible.)

Pick an edge e = (u,v) in T that's not in K.

Kruskal's rejected e because u and v were already connected by

lesser (or equal) weight edges.

Take e out of T and add one of these lesser weight edges to make
a new spanning tree. Why does this work?

The new spanning tree still has lower cost than K and it's more
like K. Contradiction.

Wik EXK - \uvony PYos%

39 /40

Data Structures for Kruskal's Algorithm

|E| times: Pick the lowest cost edge. B (w. ﬂoa\-v\.>

findMin/deleteMin —

ov So Vi ekgg bga \uo_'\%\ﬂ. /'\n eithey cale (kokal « H.L)
Jusr

|E| times: If u and v are not already connected, connect them.

find representative 2dAg 0\“‘“\,\)/ .
union L =
\’\/'\-—/
With “disjoint-set” data structure, O(|E|log|E]) time. =" (ed
= B Cmpaw;wks
2 _————-"_; u S"\\’\EX\i'*\‘d\
Qoo \E\ < QoM = 20N ol -961\\") VWY becomes
C(Q\\a\Q\O\‘{\‘
%1

40 / 40

