
Unit #7: B+-Trees
CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1



Unit Outline

I Minimizing disk I/Os

I B+-Tree properties

I Implementing B+-Tree insert and delete

I Some final thoughts on B+-Trees

2 / 25



Learning Goals

I Describe the structure, navigation and time complexity of a
B+-Tree.

I Insert and delete keys from a B+-Tree.

I Relate M, L, the number of nodes, and the height of a
B+-Tree.

I Compare and contrast B+-Trees with other data structures.

I Justify why the number of I/Os becomes a more appropriate
complexity measure (than the number of CPU operations)
when dealing with large datasets and their indexing structures
(e.g., B+-Trees).

I Explain the difference between a B-Tree and a B+-Tree

3 / 25



Memory Hierarchy

Why worry about the number of disk I/Os?

CPU
registers

Cache memory

Main memory

L1
L2
L3

Disk

hundreds of bytes < 1 cycle

a few cycles

tens of cycles

hundreds of cycles

millions of cycles

tens of kilobytes

megabytes

gigabytes

terabytes

Size Access Time

4 / 25



Time Cost: Processor to Disk

Processor

I Operates at a few GHz (gigahertz = billion cycles per second).

I Several instructions per cycle.

I Average time per instruction < 1ns (nanosecond = 10−9 seconds).

Disk

I Seek time ≈ 10ms (ms = millisecond = 10−3 seconds)

I (Solid State Drives have “seek time” ≈ 0.1ms.)

Result: 10 million instructions for each disk read!
Hold on... How long does it take to read a 1TB (terrabyte = 1012

bytes) disk? 1TB × 10ms = 10 billion seconds > 300 years?
What’s wrong? Each disk read/write moves more than a byte.
Continuous disk access about the same speed as on SSD.

5 / 25
























Memory Blocks

Each memory access to a slower level of the hierarchy fetches a
block of data.

CPU

Cache

Main memory

Disk

a few bytes

10s bytes

a few kilobytes

cache line

page

word

Block NameBlock Size

A block is the contents of consecutive memory locations.
So random access between levels of the hierarchy is very slow.

6 / 25



Chopping Trees into Blocks

Idea
Store data for many adjacent nodes in consecutive memory
locations.

Result
One memory block access provides keys to determine many (more
than two) search directions.

7 / 25



M-ary Search Tree

3 7 12 21

k < 3
3 ≤ k < 7

7 ≤ k < 12
12 ≤ k < 21

21 ≤ k

M-ary tree property

I Each node has ≤ M children

Result: Complete M-ary tree with n nodes has height Θ(logM n)

Search tree property

I Each node has ≤ M − 1 search keys: k1 < k2 < k3 . . .

I All keys k in ith subtree obey ki ≤ k < ki+1 for i = 0, 1, . . . .

Disk I/O’s (runtime) for find:

8 / 25

























































































































































































































































B+-Trees
B+-Trees of order M are specialized M-ary search trees:

I ALL leaves are at the same depth!
I Internal nodes have between dM/2e and M children
I Values are stored only at leaves. Search keys in internal nodes

only direct traffic. B-Trees store (key, value) pairs at internal
nodes.

I Leaves hold between dL/2e and L (key, value) pairs.
I The root is special. If internal, it has between 2 and M

children. If a leaf, it holds at most L (key, value) pairs.

Result

I Height is Θ(logM n)

I Insert, delete, find visit Θ(logM n) nodes

I M and L are chosen so that each (full) node fills one page of
memory. Each node visit (disk I/O) retrieves about M/2 to M
keys or L/2 to L (key, value) pairs at a time.

9 / 25














































































































































































































































































B+-Tree Nodes

Internal node with i search keys

k1 k2 ki· · · ∅∅ · · ·
1 2 i M − 1

left sibling right sibling

I i + 1 subtree pointers

I parent and left & right sibling pointers

Leaf with j (key, value) pairs

k1 k2 kj ∅∅ · · ·· · ·
v1 v2 vj

1 2 j L

left sibling right sibling

I parent and left & right sibling pointers

I values may be pointers to disk records

Each node may hold a different number of items.

10 / 25




















































































Example B+-Tree with M = 4 and L = 4

10 40

3 15 20 5030

15103 4030201 502 5 6 9 11 12 17 25 26 32 33 36 42 60 70

Values in leaf nodes are not shown.

11 / 25



































































































































































































































































































































































































































































































Making a B+-Tree

3

the empty
B+-Tree

M = 3
L = 2

3 14

insert(3) insert(14)

The root is a leaf.

What happens when we now insert(1)?

12 / 25





































































Splitting the Root

13 14 insert(1) 143

Split the leaf
Make a new root
Copy key 14 up

14

Too many keys for one leaf!
So, make a new leaf and create a parent (the new root) for both.
Why are there duplicate 14 keys?

13 / 25



























































































































Splitting a Leaf

1 143

14

1 143

14

1 143

14

insert(26)insert(59)

59

26 59

59

insert(26) causes too many keys for the 14 59 leaf.

So, make a new leaf and copy the middle key (the smallest key in
the new leaf holding the larger keys) up to the common parent.

14 / 25






















































































































































Propagating Splits

1 143

14

26 59

59 insert(5)

5 14 26 591 3

Add a new leaf
Copy key 5 to parent
There’s no room!

14 595

5 14 26 591 3

5

14

59
Split the internal node
Add a new parent
Move key 14 up

insert(5) causes too many keys for 1 3 leaf.

Copy up key 5 causes too many keys for 14 59 node.

So, make a new internal node and move up the middle key.
15 / 25






























Insertion Algorithm

1. Insert (key, value) pair in its leaf.
2. If the leaf now has L + 1 pairs: // overflow

I Split the leaf into two leaves:
I Original holds the d(L + 1)/2e small key pairs.
I New one holds the b(L + 1)/2c large key pairs.

I Copy smallest key in new leaf (the middle key) up to parent.

3. If an internal node now has M keys: // overflow
I Split the node into two nodes:

I Original holds the d(M − 1)/2e small keys.
I New one holds the b(M − 1)/2c large keys.

I If root, hang the new nodes under a new root. Done.

I Move the remaining middle key up to parent & Goto 3.

16 / 25












































































































































































































































































































Delete

5 14 26 591 3

5

14

59

79

89

89

5 14 261 3

5

14

79

79

89

89

delete(59)

17 / 25






































































































Delete: Take from a sibling

5 14 261 3

5

14

79

79

89

89

14 261 3

5

14

79

79

89

89

delete(5)

14 261 3

14

79

79

89

89

3

take from sibling update parent’s key

Take 3 from 1 3 . It has enough items that it can spare one.
Update parent’s search key.

18 / 25










































































































































Delete: Merge

14 261

14

79

79

89

89

14 261

14

79

79

89

89

delete(3)

14 261

14

79

79

89

89

sibling has no spare
merge with sibling
delete parent’s key

3

3

3

14 26

14

79

79

89

89

Now parent is underfull

14 26

79

79

89

89

14

1

1

take from its sibling
update its parent’s key

WARNING: A leaf is underfull if it holds fewer than dL/2e items.
For L > 2, an underfull leaf is not empty!

19 / 25

































































































































Delete: Take from a sibling

14 261

79

79

89

89

14

2614

79

79

89

89

delete(1)

26

20 / 25









Delete: Killing the root

2614

79

79

89

89

26

14

79

79

89

89

delete(26)

14

79

79

89

89

14 79

89

89

merge leaf with sibling

merge node

79
26

14 79

89

89

79

make single root child the new root

with sibling
parent’s keypull down

The root only gets deleted when it has just one subtree (no matter
how big M is).

21 / 25



























Deletion Algorithm

1. Remove (key, value) pair from its leaf.
2. If the leaf now has dL/2e − 1 items, // underflow

I If a sibling has a spare item then take it (smallest from right
sibling or largest from left sibling) & update parent’s key

I Else merge with a sibling & delete parent’s key

3. If internal non-root node now has dM/2e− 2 keys, // underflow

I If a sibling has a spare child then take it (leftmost from right
sibling or rightmost from left sibling) & update parent’s key

I Else merge with a sibling & pull down parent’s key & goto 3.

4. If the root now has only one child, make that child the new root.

Note: Merge never creates a node with too many items. Why?

22 / 25











































































































































































































































































Thinking about B+-Trees

I Delete is fast if leaf doesn’t underflow or we can take from a
sibling. Merging and propagation take more time.

I Insert is fast if leaf doesn’t overflow. (Could we give to a
sibling?) Splitting and propagation take more time.

I Propagation is rare if M and L are large (Why?)

I Repeated insertions and deletion can cause thrashing

I If M = L = 128, then a B+-Tree of height 4 will store at least
30,000,000 items

I Range queries (i.e., findBetween(key1, key2)) are fast
because of sibling pointers.

23 / 25























































































































































































B+-Trees in practice

Multiple B+-Trees can index the same data records.

15 20 30

1510 302011 12 17 25 26 32 33 36

auk yakboa emu gnuelk fox owlbat goa keaape

bat emu kea

Employee ID

Employee Name

Name: auk
ID: 15
Food: fish

Name: yak
ID: 20
Food: grass

disk

24 / 25



A Tree by Any Other Name...

I B-Trees with M = 3 are called 2-3 trees

I B-Trees with M = 4 are called 2-3-4 trees

Why would we ever use these?

25 / 25


