Unit \#7: B^{+}-Trees
 CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

- Minimizing disk I/Os
- B^{+}-Tree properties
- Implementing B^{+}-Tree insert and delete
- Some final thoughts on B^{+}-Trees

Learning Goals

- Describe the structure, navigation and time complexity of a B^{+}-Tree.
- Insert and delete keys from a B^{+}-Tree.
- Relate M, L, the number of nodes, and the height of a B^{+}-Tree.
- Compare and contrast B^{+}- Trees with other data structures.
- Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of CPU operations) when dealing with large datasets and their indexing structures (e.g., B^{+}-Trees).
- Explain the difference between a B-Tree and a B^{+}-Tree

Memory Hierarchy

Why worry about the number of disk I/Os?

Size

Time Cost: Processor to Disk

Processor

- Operates at a few GHz (gigahertz = billion cycles per second).
- Several instructions per cycle.
- Average time per instruction <1 ns (nanosecond $=10^{-9}$ seconds).

Disk

- Seek time $\approx 10 \mathrm{~ms}$ ($\mathrm{ms}=$ millisecond $=10^{-3}$ seconds)
- (Solid State Drives have "seek time" $\approx 0.1 \mathrm{~ms}$.) 0.03 ms

Result: 10 million instructions for each disk read!
Hold on... How long does it take to read a 1TB (terrabyte $=10^{12}$ bytes) disk? $1 \mathrm{~TB} \times 10 \mathrm{~ms}=10$ billion seconds >300 years? What's wrong? Each disk read/write moves more than a byte. Continuous disk access about the same speed as on SSD.

Memory Blocks

Each memory access to a slower level of the hierarchy fetches a block of data.

Block Size		Block Name
CPU		
a few bytes	i	word
10s bytes	Cache \downarrow	cache line
Main memory		
a few kilobytes		page
	Disk	

A block is the contents of consecutive memory locations. So random access between levels of the hierarchy is very slow.

Chopping Trees into Blocks

Idea

Store data for many adjacent nodes in consecutive memory locations.

Result

One memory block access provides keys to determine many (more than two) search directions.

M-ary Search Tree M-1 keys

Mary tree property

- Each node has $\leq M$ children

Result: Complete M-dry tree with n nodes has height $\Theta\left(\log _{M} n\right)$
Search tree property

- Each node has $\leq M-1$ search keys: $k_{1}<k_{2}<k_{3} \ldots$
- All keys k in i th subtree obey $k_{i} \leq k<k_{i+1}$ for $i=0,1, \ldots$.

Disk I/O's (runtime) for find: worst case
a) $\theta\left(\log _{M} n\right)$
b) $\theta(\log n)$
c) $\theta(n)$

B^{+}-Trees

B^{+}-Trees of order M are specialized M-dry search trees:

- Internal nodes have between $\lceil M / 2\rceil$ and M children
- Values are stored only at leaves. Search keys in internal nodes only direct traffic. B-Trees store (key, value) pairs at internal nodes.
- Leaves hold between $\lceil L / 2\rceil$ and L (key, value) pairs.
- The root is special. If internal, it has between 2 and M non children. If a leaf, it holds at most L (key, value) pairs.

Result

- Height is $\Theta\left(\log _{M} n\right)$

- Insert, delete, find visit $\Theta\left(\log _{M} n\right)$ nodes
- M and L are chosen so that each (full) node fills one page of memory. Each node visit (disk I/O) retrieves about $M / 2$ to M keys or $L / 2$ to L (key, value) pairs at a time.

B^{+}-Tree Nodes

Internal node with i search keys

- $i+1$ subtree pointers

$$
k_{1}<k_{2}<\ldots
$$

- parent and left \& right sibling pointers

Leaf with j (key, value) pairs

- parent and left \& right sibling pointers
- values may be pointers to disk records

Each node may hold a different number of items.

Example B^{+}-Tree with $M=4$ and $L=4$

$$
2 \leq \# \text { children } \leq 4
$$

23 entries
max Hentries ir

$$
\text { height }=2
$$

$$
M=4 \quad L=4 \text { ? }
$$

BST would have height at least? $23(4) 56$
Values in leaf nodes are not shown.
Hnodes in $35 T$ of height $h \leqslant 2^{h+1}-1$

Making a B^{+}-Tree

The root is a leaf.
What happens when we now insert(1)?

Splitting the Root

Too many keys for one leaf!
So, make a new leaf and create a parent (the new root) for both.
Why are there duplicate 14 keys? direct traffic

Splitting a Leaf

insert(26) causes too many keys for the | 14 | 59 |
| :---: | :---: |
| leaf. | |

So, make a new leaf and copy the "middle" key (the smallest key in the new leaf holding the larger keys) up to the common parent.

Propagating Splits

Split the internal node Add a new parent
Move key 14 up

insert(5) causes too many keys for | 1 | 3 |
| :--- | :--- |
| leaf. | |

Copy up key 5 causes too many keys for | 14 | 59 |
| :--- | :--- |
| node. | |

So, make a new internal node and move up the middle key.

Insertion Algorithm $\underset{\substack{M=y s}}{M-1} \rightarrow M=5$

1. Insert (key, value) pair in its leaf.
2. If the leaf now has $L+1$ pairs: // overflow

- Split the leaf into two leaves:
- Original holds the $\lceil(L+1) / 2\rceil$ small key pairs.
- New one holds the $\lfloor(L+1) / 2\rfloor$ large key pairs.
worforl leas
he comes
2 hulfforll
lewes
- Copy smallest key in new leaf (the middle key) up to parent.

3. If an internal node now has M keys: // overflow

- Split the node into two nodes:
- Original holds the $\lceil(M-1) / 2\rceil$ small keys.
- New one holds the $\lfloor(M-1) / 2\rfloor$ large keys.
- If root, hang the new nodes under a new root. Done.
- Move the remaining middle key up to parent \& Goto 3.

Delete

Delete: Take from a sibling

Take 3 from | 1 | 3 |
| :--- | :--- | . It has enough items that it can spare one. Update parent's search key. \leftarrow not 6 plional

Delete: Merge

Now parent is underfull

WARNING: A leaf is underfull if it holds fewer than $\lceil L / 2\rceil$ items.
For $L>2$, an underfull leaf is not empty!

Delete: Take from a sibling

Delete: Killing the root

The root only gets deleted when it has just one subtree (no matter how big M is).

Deletion Algorithm

1. Remove (key, value) pair from its leaf.
2. If the leaf now has $\lceil L / 2\rceil-1$ items, // underflow

- If a sibling has a spare item then take it (smallest from right sibling or largest from left sibling) \& update parent's key
- Else merge with a sibling \& delete parent's key

3. If internal non-root node now has $\lceil M / 2\rceil-2$ keys, // underflow

- Else merge with a sibling \& pull down parent's key \& goto 3.

4. If the root now has only one child, make that child the new root.

Note: Merge never creates a node with too many items. Why?

Thinking about B^{+}-Trees

- Delete is fast if leaf doesn't underflow or we can take from a sibling. Merging and propagation take more time.
- Insert is fast if leaf doesn't overflow. (Could we give to a sibling?) Splitting and propagation take more time.
- Propagation is rare if M and L are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If $M=L=128$, then a B^{+}-Tree of height 4 will store at least 30,000,000 items

- Range queries (ie. 4 findBetween (key, key 2)) are fast because of sibling pointers.

B^{+}-Trees in practice

Multiple B^{+}-Trees can index the same data records.

A Tree by Any Other Name...

- B-Trees with $M=3$ are called 2-3 trees
- B-Trees with $M=4$ are called 2-3-4 trees

Why would we ever use these?

