Unit #7: B*-Trees
CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

v

Minimizing disk 1/Os

B*-Tree properties

v

v

Implementing B*-Tree insert and delete

Some final thoughts on B*-Trees

v

N

25

Learning Goals

Describe the structure, navigation and time complexity of a
BT-Tree.

Insert and delete keys from a BT™-Tree.

Relate M, L, the number of nodes, and the height of a
BT-Tree.

Compare and contrast BT-Trees with other data structures.

Justify why the number of 1/Os becomes a more appropriate
complexity measure (than the number of CPU operations)
when dealing with large datasets and their indexing structures
(e.g., BT-Trees).

Explain the difference between a B-Tree and a B™-Tree

25

Memory Hierarchy

Why worry about the number of disk |1/0s?

Size Access Time
hundreds of bytes CPU < 1 cycle
registers
i Cache memory
tens of kilobytes %% a few cycles
megabytes L3 tens of cycles
gigabyftes Main memory huudreds of cycles

terabytes Disk millions okcycles

25

Time Cost: Processor to Disk

Processor

» Operates at a few GHz (gigahertz = billion cycles per second).
» Several instructions per cycle.

> Average time per instruction < 1ns (nanosecond = 107° seconds).

Disk
» Seek time =~ 10ms (ms = millisecond = 10~3 seconds)
» (Solid State Drives have “seek time” ~ 0.1ms.) ().03ms

Result: 10 million instructions for each disk read!

Hold on... How long does it take to read a 1TB (terrabyte = 10"
bytes) disk? 1TB x 10ms = 10 billion seconds > 300 years?
What's wrong? Each disk read/write moves more than a byte.
Continuous disk access about the same speed as on SSD.

Memory Blocks

Each memory access to a slower level of the hierarchy fetches a
block of data.

Block Size Block Name
CPU
a few bytes : word
Cache
10s bytes : cache line
Main memory
a few kilobytes : page
Disk

A block is the contents of consecutive memory locations.
So random access between levels of the hierarchy is very slow.

6

25

Chopping Trees into Blocks

Idea
Store data for many adjacent nodes in consecutive memory
locations.
|
ANANANAR AN AN AN AN AN AN AN AN AW AN AN AN A AN AN AW A AR AR AU AN ARV AR ARRNY AR AR ARVA
Result

One memory block access provides keys to determine many (more

than two) search directions.

25

M-ary Search Tree M-1 keys =11

GIeE 1) /N
VANV
\

M-ary tree property

» Each node has < M children
Result: Complete M-ary tree with n nodes has height ©(log,, n)
Search tree property

» Each node has < M — 1 search keys: k1 < kp < k3. ..
> All keys k in ith subtree obey ki < k < ki1 for i =0,1,....
st € (ba N
- Disk 1/O’s (runtime) for find:) é(M)
ifews =n b) &(leg n)
Q) Bn)

/25

B*-Trees /
BT -Trees of order M are specialized M-ary search trees:

» ALL leaves are at the same depth! &
» Internal nodes have between [M /2] and M children
L odenct » Values are stored only at leaves. Search keys in internal nodes

o only direct traffic. B-Trees store (key, value) pairs at internal
o y interna|
nodes.)

» Leaves hold between [L/2] and L (key, value) pairs. h\
» The root is special. If internal, it has between 2 and M Né4
children. If a leaf, it holds at most L (key, value) pairs. eal

Result F Mis comsld His s
» Height is ©(logy, n) -~ i be o (/j
> Insert, delete, find visit ©(logy, n) nodes‘j

» M and L are chosen so that each (full) node fills one page of
memory. Each node visit (disk 1/O) retrieves about M/2 to M
keys or L/2 to L (key, value) pairs at a time.

B™-Tree Nodes

avw\'l'
Internal node with i search keys }
1 2) M-1
left sibling «— k1 [ka| -~ [ki| 0| -+ | 0 —— right sibling
S A ol NN
k 4%s

» /4 1 subtree pointers

> parent and left & right sibling pointers

Leaf with j (key, value) pairs jFJ“L
1 L

2
left sibling «@1 i; 61l - @} right sibling

» parent and left & right sibling pointers

5

» values may be pointers to disk records

Each node may hold a different number of items.

10/25

Example B™-Tree with M =4 and L = 4
2 2 #childrew <

23 entries
‘\etju =2

[10]40]]

Azl 1O Glolel® @izl) @7l 1) @256) @o[32[33[30) @[] [) Goeol70])

BST would ko hehh clless) 7 2 3@5‘ /4

Values in leaf nodes are not shown.

Brods n BT oF b K & 2"

11/25

Making a B™-Tree

1o

the empty
Bt-Tree

insert(3)

insert(14)

un vg(lff')'icgl 7 S'm(',

The root is a leaf.

What happens when we now insert(1)?

12/25

Splitting the Root @gj%@

4] |
insert(1) a4l D
1

—_—— ——

=

Split the leaf
Make a new root
Copy key 14 up

Too many keys for one leaf!
So, make a new leaf and create a parent (the new root) for both.
Why are there duplicate 14 keys? é.‘reo\’ Mmg

13 /25

Splitting a Leaf

4] | insert (59 4[| insert(26)

@ . st
ARV
— N
\ 5
1[3) (14]26) (59 bl |\
T o ,\A}'o

insert(26) causes too many keys for the leaf.

| 7]
So, make a new leaf and copy the middle key (the smallest key in
the new leaf holding the larger keys) up to the common parent.

14 /25

Propagating Splits

14159 insert(5) 5
1[3) (14[26) (59 113) (5]) (4]26) (39

Add a new leaf
Copy key 5 to parent
There’s no room!

Split the internal node
Add a new parent _
Move key 14 up

spmue— —_

insert(5) causes too many keys for leaf.

Copy up key 5 causes too many keys for node.

So, make a new internal node and move up the middle key.

15/25

Insertion Algorithm ﬂ;si > ‘ l \ \ M
5 N

1. Insert (key, value) pair in its leaf. S $
2. If the leaf now has L + 1 pairs: // overflow Mg_,\ \"
» Split th_e_leaf into two leaves: _ \4660 2‘,\\
» Original holds the [(L + 1)/2] small key pairs. \A"\g'
» New one holds the |(L + 1)/2] large key pairs. !J""J

» Copy smallest key in new leaf (the middle key) up to parent.

3. If an internal node now has M keys: // overflow W,Z
» Split the node into two nodes: WMQ“ Y 7'

» Original holds the [(M — 1)/2] small keys. e \S(&J\\ u"
» New one holds the | (M —1)/2] large keys. We

» If root, hang the new nodes under a new root. Done.

» Move the remaining middle key up to parent & Goto 3.

16 /25

Delete

17/25

Delete: Take from a sibling

}6"5 \ ('; 89
\AM‘ b fuble- D @O

l/r

89

D ®D

89

BECID

Take 3 from . It has enough items that it can spare one.
Update parent’s search key. <— ho{— BPI'\GM[
—_— e

18/25

Delete: Merge

Now parent is underfull

!
14
79[89]
oD (@ s @D

7

\
take fr its sibling
ake from its sibling m‘{.{.“ t -‘—b
¢

update its parent’s key

sibling has no spare
merge with sibling
delete parent’s key

WARNING: A leaf is underfull if it holds fewer than [L/2] items.
For L > 2, an underfull leaf is not empty!

19/25

Delete: Take from a sibling

20 /25

Delete: Killing the root

e eaf with sibling

nerge node |with sibling
pull down|parent’s key

make single root childithe new root
a4 D @] ®[)

The root only gets deleted when it has just one subtree (no matter
how big M is).

21/25

Deletion Algorithm

1. Remove (key, value) pair from its leaf.
2. If the leaf now has [L/2] — 1 items, // underflow

» If a sibling has a spare item then take it (smallest from right
sibling or largest from left sibling) & update parent's key

» Else merge with a sibling & delete parent’s key
3. If internal non-root node now has [M /2] —2 keys, // underflow

/\ i
6&”’,@\ » If a sibling has a spare child then take it (leftmost from right
Vedl sibling or rightmost from left sibling) & update parent's key

» Else merge with a sibling & pull down parent’s key & goto 3.

4. If the root now has only one child, make that child the new root.

Note: Merge né:/jvlcrega(;ce_s a node with too many items. Vﬂ?
Jraky G 37y b
. FLL o(‘- So QJ“ ,CC A 44:_
A . L’;\\o\zw) % \\U\g ! ‘”"‘}z‘-

Thinking about B™-Trees

» Delete is fast if leaf doesn't underflow or we can take from a
sibling. Merging and propagation take more time.

> Insert is fast if leaf doesn't overflow. (Could we give to a
sibling?) Splitting and propagation take more time.

» Propagation is rare if M and L are large (Why?)

> Repeated insertions and deletion can cause thrashing

» If M = L =128, then a B™-Tree of height 4 will store at least

30,000,000 items 7->A(

» Range queries (i.€. VfindBe_tween(keyl, key2)) are fast

because 041; sibling M)
¢ ’ { = 544931
x L1 33
Wr>4ﬁ_, 2
S

X
“q

23 /25

B*-Trees in practice

Multiple BT-Trees can index the same data records.

(ape[auk) (bat [boa| elk [) @mu] fox [gnu[goa) (kea|owl|yak

{0[11]12) (15|17) (20]25|26]) (30]32]33|36)

disk
Name: auk Name: yak
ID: 15 ID: 20
Food: fish Food: grass

24 /25

A Tree by Any Other Name...

» B-Trees with M = 3 are called 2-3 trees
» B-Trees with M = 4 are called 2-3-4 trees

Why would we ever use these?

25 /25

