Unit \#2: Priority Queues
 CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

- Rooted Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

Learning Goals

- Provide examples of appropriate applications for priority queues and heaps
- Manipulate data in heaps
- Describe and apply the Heapify algorithm, and analyze its complexity

Rooted Trees

- Family Trees
- Organization Charts

- Classification trees (a.k.a. keys)
- What kind of flower is this?
- Is this mushroom poisonous?
- File directory structure
- folders, subfolders in Windows
- directories, subdirectories in UNIX
- Non-recursive call graphs

Tree Terminology
root: A
leaf: DEF...
child: of $A: B$ and C
parent: of $H: G$

sibling: B and C
ancestor: of $N: N, H, G, C, A$
descendent: of $C: C, G, I, H, J, K, L, M, N$
subtree: of $G: G$ and all descendent s

Tree Terminology Reference

root: the single node with no parent
leaf: a node with no children
child: a node pointed to by me
parent: the node that points to me
sibling: another child of my parent

ancestor: my parent or my parent's ancestor
descendent: my child or my child's descendent
subtree: a node and its descendents

More Tree Terminology

depth: Number of edges on path from root to node depth of H ? 3

More Tree Terminology

height: Number of edges on longest path from node to descendent or, for whole tree, from root to leaf

More Tree Terminology

(downward) degree: Number of children of a node degree of B ? 3

One More Tree Terminology Slide
binary: each node has degree at most 2 d-are: degree at most d *nodes ${ }^{n}$ in a Sinany tree of height h

$$
\underbrace{h+1 \leq n \leq 2^{h+1}-1}_{\text {complete: as many nodes as }}
$$

complete: as many nodes as possible for its height (each row filled in)
nearly complete: each row except the last one is filled in, all nodes in the last row are as far left as possible
If nearly complete tree has n nodes, what is its height? tricky - - 0 prove $\lfloor\lg n\rfloor$

Longest Path

Find the longest undirected path in a tree
Longest path either
(0) iswithen a child subtree
or (2) contains the root
lorgpath $(T)=\max \{$
(1) max longpath $\left(T_{c}\right)$

(2) $2+\max _{\text {child } c \neq d}$ height $\left(T_{c}\right)+$ height $\left.\left(T_{d}\right)\right\} T_{c}$
long path $(T)=0$ if $|T|=1$
height $(T)=1+\max _{\text {child }}$ height $\left(T_{c}\right)$

Longest Path Example

Back to Queues

- Applications
- ordering CPU jobs
- simulating events
- picking the next search site
- But we don't want FIFO ...
- short jobs should go first
- earliest (simulated time) events should go first
- most promising sites should be searched first

Priority Queue ADT

- Priority Queue operations
- create
- destroy
- insert
- deleteMin
- is_empty

- Priority Queue property: For two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y.

Applications of the Priority Q

- Hold jobs for a printer in order of length
- Store packets on network routers in order of urgency
- Simulate events
- Select symbols for compression
- Sort numbers
- Anything greedy: an algorithm that makes the "locally best choice" at each step

Priority Q Data Structures

- Unsorted list
- insert time:
$\theta(1)$
- deleteMin time: $\theta(n)$
- Sorted list
- insert time: $\theta(n)$
- deleteMin time: $\theta(1)$

Binary Heap Priority Q Data Structure

Heap-order property: parent's key \leq children's keys.

- minimum is always at the top

Structure property: "nearly complete tree"

- depth is always $\mathrm{O}(\log n)$
- next open location always known

WARNING: This has NO SIMILARITY to the "heap" you hear about when people say "things you create with new go on the heap".

Nifty Storage Trick

n elements

Navigation using indices:

- left_child $(i)=2 i+1$
- right_child $(i)=2 i+2$
- parent $(i)=\left\lceil\frac{i}{2}\right\rceil-1=\left\lfloor\frac{i-1}{2}\right\rceil$
- root $=0$
- next free position $=n$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 5 | 7 | 6 | 10 | 8 | 13 | 9 | 12 | 14 | 11 | |

DeleteMin

Invariants violated! No longer "nearly complete"

Swap (Heapify) Down

Move last element to root then swap it down to its proper position.

DeleteMin Code

$$
\begin{aligned}
& \text { int deleteMin() \{ } \\
& \begin{array}{l}
\text { assert(!isEmpty ()); } \\
\text { zint returnVal = Heap [0]; } \\
\text { - Heap }[0]=\text { Heap [n-1]; } \\
\text { n--; } \\
\text { SwapDown (0) ; } \\
\text { return returnVal; } \\
\text { \} }
\end{array}
\end{aligned}
$$

will be the index of smallem

$\operatorname{int}(s)=i ;$
int left = i * $2+1$;
int right = left + 1;
if (left < n \&\&
Heap[left] < Heap [s])
$\mathrm{s}=$ left;
if (right < n \&\&
Heap[right] < Heap [s])
$\mathrm{s} \stackrel{\text { right; }}{=}$
\rightarrow if (s != i) \{
int tmp = Heap[i];
Heap[i] = Heap[s];
Heap [s] = tmp;
swapDown(s);
\}

Insert

Invariant violated! Child has smaller key than parent.

Swap (Heapify) Up

Put new element last then swap it up to its proper position.

Insert Code


```
void swapUp(int i) \{
    if ( i == 0 ) return;
    int \(p=(i-1) / 2\);
    if (Heap[i] < Heap[p] ) \{
        int tmp \(=\) Heap[i];
        Heap [i] = Heap [p];
        Heap [p] = tmp;
        swapUp(p);
```

\}
\}

Heapify: Build a Heap from a non-Heap Array

1. Start with the input array.

2. Fix the heap-order property bottom up. Use swapDown.

Heapify Example...
D's mear proper heops

Heapify Example

Heapify Runtime

swapDown on a heap of height h takes at most steps.

$$
\begin{aligned}
& 2^{H} \sum_{h=1}^{H} h / 2^{h} \leq 2^{H+1} \\
& \leqslant 2^{H}\left(\frac{1 / 2}{h} 2^{2 / 4}+3 / 8+\ldots\right.
\end{aligned}=S
$$

Heapify Runtime: Charging Scheme

Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one step of swapDown. By induction, we can show that when swapDown is called on a node v, both children of v have a path (the rightmost path) to a leaf that is uncharged. The edges on the left child's rightmost path plus the edge to the left child pay for the steps of swapDown at v. The edges on the right child's rightmost path plus the edge to the right child form the uncharged path available to the parent of v.

Thinking about Binary Heaps

Observations

- finding a child/parent index is a multiply/divide by two
- deleteMin and insert access far-apart array locations
- deleteMin accesses all children of visited nodes
- insert accesses only parent of visited nodes
- insert is at least as common as deleteMin

Realities

- division and multiplication by powers of two are fast
- far-apart array accesses ruin cache performance
- with huge data sets, disk I/O dominates

Solution: d-Heaps

Nearly complete d-ary trees (representable by array) with Heap-order property.

Good choices for d :

- fit one set of children on a memory page/disk block
- fit one set of children in a cache line
- optimize performance based on ratio of inserts/deleteMins
- make d a power of two for efficiency

d-Heap Navigation

- j th-child $(i)=d i+j$
- $\operatorname{parent}(i)=\left\lfloor\frac{i-1}{d}\right\rfloor$
- root $=$
- next free position $=n$

