
Unit #2: Priority Queues
CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

I Rooted Trees, Briefly

I Priority Queue ADT

I Heaps

I Implementing Priority Queue ADT
I Focus on Create: Heapify
I Brief introduction to d-Heaps

2 / 32

Learning Goals

I Provide examples of appropriate applications for priority
queues and heaps

I Manipulate data in heaps

I Describe and apply the Heapify algorithm, and analyze its
complexity

3 / 32

Rooted Trees

I Family Trees

I Organization Charts

I Classification trees (a.k.a. keys)

I What kind of flower is this?
I Is this mushroom poisonous?

I File directory structure

I folders, subfolders in Windows
I directories, subdirectories in UNIX

I Non-recursive call graphs

4 / 32

Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

root:

leaf:

child:

parent:

sibling:

ancestor:

descendent:

subtree:

5 / 32

Tree Terminology Reference

H

MLKJ

D E

B

G

I

C

A

F

N

root: the single node with no parent

leaf: a node with no children

child: a node pointed to by me

parent: the node that points to me

sibling: another child of my parent

ancestor: my parent or my parent’s ancestor

descendent: my child or my child’s descendent

subtree: a node and its descendents

6 / 32

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

depth: Number of edges on path from root to node

depth of H?

7 / 32

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

height: Number of edges on longest path from node to descendent
or, for whole tree, from root to leaf

height of tree?

height of G?

8 / 32

More Tree Terminology

H

MLKJ

D E

B

G

I

C

A

F

N

(downward) degree: Number of children of a node

degree of B?

9 / 32

One More Tree Terminology Slide

LKJIH

D E

B

F G

C

A

binary: each node has degree at most 2

d-ary: degree at most d

complete: as many nodes as possible for its height (each row filled in)

nearly complete: each row except the last one is filled in, all
nodes in the last row are as far left as possible

10 / 32

Longest Path

r

Find the longest undirected path in a tree

11 / 32

Longest Path Example

H

MLKJ

D E

B

G

I

C

A

F

N

12 / 32

Back to Queues

I Applications
I ordering CPU jobs
I simulating events
I picking the next search site

I But we don’t want FIFO ...
I short jobs should go first
I earliest (simulated time) events should go first
I most promising sites should be searched first

13 / 32

Priority Queue ADT

ant 8

bee 2

cat 4

dog 14

emu 6

insert deleteMin

I Priority Queue operations
I create
I destroy
I insert
I deleteMin
I is empty

I Priority Queue property: For two elements in the queue, x and
y , if x has a lower priority value than y , x will be deleted
before y .

14 / 32

Applications of the Priority Q

I Hold jobs for a printer in order of length

I Store packets on network routers in order of urgency

I Simulate events

I Select symbols for compression

I Sort numbers

I Anything greedy: an algorithm that makes the “locally best
choice” at each step

15 / 32

Priority Q Data Structures

I Unsorted list

I insert time:

I deleteMin time:

I Sorted list

I insert time:

I deleteMin time:

16 / 32

Binary Heap Priority Q Data Structure

111412913

7 6

4

10 8

5

2

Heap-order property: parent’s key ≤ children’s keys.

I minimum is always at the top

Structure property: “nearly complete tree”

I depth is always O(log n)

I next open location always known

WARNING: This has NO SIMILARITY to the “heap” you hear
about when people say “things you create with new go on the
heap”.

17 / 32

Nifty Storage Trick

111412913

7 6

4

10 8

5

2
0

1 2

3 4 5 6

7 8 9 10 11

Navigation using indices:

I left child(i) =

I right child(i) =

I parent(i) =

I root =

I next free position =

0 1 2 3 4 5 6 7 8 9 10 11 12

2 4 5 7 6 10 8 13 9 12 14 11

18 / 32

DeleteMin

111412913

7 6

4

10 8

5

2

111412913

7 6

4

10 8

5

2

Invariants violated! No longer “nearly complete”

19 / 32

Swap (Heapify) Down

Move last element to root then swap it down to its proper position.

1412913

7 6

4

10 8

5

11

1412913

7 6

4

10 8

5

1412913

7

6

4

10 8

5

11

1412913

7

6

4

10 8

5

11

11

20 / 32

DeleteMin Code

int deleteMin() {

assert(!isEmpty());

int returnVal = Heap[0];

Heap[0] = Heap[n-1];

n--;

swapDown(0);

return returnVal;

}

Runtime:

void swapDown(int i) {

int s = i;

int left = i * 2 + 1;

int right = left + 1;

if(left < n &&

Heap[left] < Heap[s])

s = left;

if(right < n &&

Heap[right] < Heap[s])

s = right;

if(s != i) {

int tmp = Heap[i];

Heap[i] = Heap[s];

Heap[s] = tmp;

swapDown(s);

}

}

21 / 32

Insert

11

1412913

7

6

4

10 8

5

31412913

7

6

4

10 8

5insert(3)

11

Invariant violated! Child has smaller key than parent.

22 / 32

Swap (Heapify) Up

Put new element last then swap it up to its proper position.

1412913

7 10 8

5

1412913

7

4

10

8

5

1412913

7

6

4

10

85 11

1412913

7

6 4

8511

3

4

6

11

6

11 3

3

10

3

23 / 32

Insert Code

void insert(int x) {

assert(!isFull());

Heap[n] = x;

n++;

swapUp(n-1);

}

void swapUp(int i) {

if(i == 0) return;

int p = (i - 1)/2;

if(Heap[i] < Heap[p]) {

int tmp = Heap[i];

Heap[i] = Heap[p];

Heap[p] = tmp;

swapUp(p);

}

}
Runtime:

24 / 32

Heapify: Build a Heap from a non-Heap Array

1. Start with the input array.
12 5 11 3 10 6 9 4 8 1 7 2

27184

3 10

5

6 9

11

12

Invariant violated!

0

1 2

3 4 5 6

7 8 9 10 11

2. Fix the heap-order property bottom up. Use swapDown.

for(i=n/2-1; i >=0; i--) swapDown(i);

25 / 32

Heapify Example...

7184

3 10

5

6 9

11

12

2

7184

3 10

5

9

11

12

2 6

2

84

3

5

9

11

12

6

2

84

3

5

9

11

12

67

1

10 7

1

10

0

1 2

3 4 5 6

7 8 9 10 11

26 / 32

Heapify Example

0

1 2

3 4 5 6

7 8 9 10 11

2

84

3

5

9

11

12

6

7

1

10

2

8

4

3

9

1112

6

7

5

10

1

2

84

3 9

11

12

6

7

5

10

1

27 / 32

Heapify Runtime

swapDown on a heap of height h takes at most steps.

2

8

4

3

9

1112

6

7

5

10

1
0

1 2

3 4 5 6

7 8 9 10 11

Let H be the height of the heap.

swapDown is called once on heap of height H
≤ 2 times on heap of height H − 1
≤ 4 times on heap of height H − 2
...
≤ 2H−1 times on heap of height 1

Total # steps ≤
∑H

h=1 h2H−h = 2H
∑H

h=1 h/2h ≤ 2H+1 = O(n)

28 / 32

Heapify Runtime: Charging Scheme

$ $

$ $ $ $

$$$$$$$$

Possible violations. How much time to fix them?
Place a dollar on each edge of the heap. One dollar pays for one
step of swapDown. By induction, we can show that when
swapDown is called on a node v , both children of v have a path
(the rightmost path) to a leaf that is uncharged. The edges on the
left child’s rightmost path plus the edge to the left child pay for
the steps of swapDown at v . The edges on the right child’s
rightmost path plus the edge to the right child form the uncharged
path available to the parent of v .

29 / 32

Thinking about Binary Heaps

Observations

I finding a child/parent index is a multiply/divide by two

I deleteMin and insert access far-apart array locations

I deleteMin accesses all children of visited nodes

I insert accesses only parent of visited nodes

I insert is at least as common as deleteMin

Realities

I division and multiplication by powers of two are fast

I far-apart array accesses ruin cache performance

I with huge data sets, disk I/O dominates

30 / 32

Solution: d-Heaps
Nearly complete d-ary trees (representable by array) with
Heap-order property.

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11

Good choices for d :

I fit one set of children on a memory page/disk block

I fit one set of children in a cache line

I optimize performance based on ratio of inserts/deleteMins

I make d a power of two for efficiency

31 / 32

d-Heap Navigation

I jth-child(i) =

I parent(i) =

I root =

I next free position =

1

3 7 2

4 8 5 12 11 10 6 9

1 3 7 2 4 8 5 12 11 10 6 9

0

1 2 3

0 1 2 3 4 5 6 7 8 9 10 11

32 / 32

