Unit #1: Complexity Theory and Asymptotic
Analysis
CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Learning Goals

Given code, write a formula that measures the number of
steps executed as a function of the size of the input.

Use asymptotic notation to simplify functions and to express
relations between functions.

Know the asymptotic relations between common functions.

Understand why to use worst-case, best-case, or average-case
complexity measures.

Give examples of tractable, intractable, and undecidable
problems.

3/39

Unit Outline

v

Brief proof reminder

v

Algorithm Analysis: Counting steps

v

Asymptotic Notation

v

Runtime Examples

v

Problem Complexity

Proof by ...

» Counterexample

» show an example which does not fit with the theorem
» Thus, the theorem is false.

» Contradiction

» assume the opposite of the theorem
» derive a contradiction
» Thus, the theorem is true.
> Induction
prove for a base case (e.g., n=1)
assume for all n < k (for arbitrary k)
prove for the next value (n = k + 1)
Thus, the theorem is true.

vV vyyvyy

N

39

39

Example: Proof by Induction (worked) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

Proof:
Let x1x2x3 ... x, be the decimal digits of x.
Let the sum of its decimal digits be

n
S(x) = ZX,‘
i=1
We'll prove the stronger result:

S(x) mod 3 = x mod 3.

How do we use induction?

Example: Proof by Induction (worked) 3/4

Inductive hypothesis:
Assume for an arbitrary integer k > 0 that for any number x with
n < k digits:

S(x) mod 3 = x mod 3.

Inductive step:
Consider a number x with n = k + 1 digits:

X = X1X2 ... XpXk+1-

Let z be the number x3x2 ... xx. It's a k-digit number so the
inductive hypothesis applies:

5(z) mod 3 = z mod 3.

7/39

Example: Proof by Induction (worked) 2/4

Base Case:
Consider any number x with one (n = 1) digit (0-9).

S(x) = Zx,- =x = Xx.
i=1

So, it's trivially true that S(x) mod 3 = x mod 3 when n = 1.

Example: Proof by Induction (worked) 4/4

Inductive step (continued):

x mod 3 = (10z + xx11) mod 3
= (92 + z + xk4+1) mod 3
= (z 4 Xk4+1) mod 3
(5(z) + xk+1) mod 3
(x1 +x + -+ Xk + Xk41) mod 3
S(x) mod 3

(x =10z + xk+1)

(9z is divisible by 3)
(induction hypothesis)

QED (quod erat demonstrandum: “what was to be demonstrated”)

39

A Task to Solve and Analyze Analysis of Algorithms

Find a student’'s name in a class given her student ID

v

Analysis of an algorithm gives insight into

» how long the program runs (time complexity or runtime) and
» how much memory it uses (space complexity).

v

Analysis can provide insight into alternative algorithms

» Input size is indicated by a non-negative integer n (sometimes
there are multiple measures of an input's size)

v

Running time is a real-valued function of n such as:
» T(n)=4n+5
» T(n)=0.5nlogn—2n+7
> T(n):2"—|—n3+3n

9/39 10/39
Rates of Growth Rates of Growth
Suppose a computer executes lop per picosecond (trillionth): Suppose a computer executes lop per picosecond (trillionth):
n= 10 n= 10 100
logn 1ps log n 1ps 2ps
n 10ps n 10ps 100ps
nlogn 10ps nlogn 10ps 200ps
n? 100ps n? 100ps 10ns
2" 1ns 2" Ins 1Es

Exasecond(Es) = 32 billion years

11/39 11/39

Rates of Growth Rates of Growth

Suppose a computer executes lop per picosecond (trillionth): Suppose a computer executes lop per picosecond (trillionth):
n= 10 100 1,000 n= 10 100 1,000 10,000
log n 1ps 2ps 3ps log n 1ps 2ps 3ps 4ps
n 10ps 100ps 1ns n 10ps 100ps 1ns 10ns
nlogn 10ps 200ps 3ns nlogn 10ps 200ps 3ns 40ns
n? 100ps 10ns 1us n? 100ps 10ns lpus 100us
2" Ins 1Es 10%% 2" Ins 1Es 10%%
Exasecond(Es) = 32 billion years Exasecond(Es) = 32 billion years
11/39 11/39
Rates of Growth Rates of Growth
Suppose a computer executes lop per picosecond (trillionth): Suppose a computer executes lop per picosecond (trillionth):
n= 10 100 1,000 10,000 10° n= 10 100 1,000 10,000 10° 10°
logn 1ps 2ps 3ps 4ps 5ps log n 1ps 2ps 3ps 4ps 5ps 6ps
n 10ps 100ps 1ns 10ns 100ns n 10ps 100ps 1ns 10ns 100ns 1pus
nlogn 10ps 200ps 3ns 40ns 500ns nlogn 10ps 200ps 3ns 40ns 500ns 6us
n? 100ps 10ns lpus 100us 10ms n? 100ps 10ns lpus 100pus 10ms 1s
2" 1ns 1Es 10%%%s 2" 1ns 1Es 10%%%s

Exasecond(Es) = 32 billion years Exasecond(Es) = 32 billion years

11/39 11/39

Rates of Growth

Suppose a computer executes lop per picosecond (trillionth):

n= 10 100 1,000 10,000 10° 10° 10°
log n 1ps 2ps 3ps 4ps 5ps 6ps 9ps
n 10ps 100ps 1ns 10ns 100ns 1lus 1ms
nlogn 10ps 200ps 3ns 40ns 500ns 6us 9ms
n? 100ps 10ns lpus 100pus 10ms 1s 1lweek
2" Ins 1Es 10%%

Exasecond(Es) = 32 billion years

Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i
return -1

2) Should we assume a worst-case, best-case, or average-case input
of size n?

Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i
return -1

1) What's the input size, n?

Analyzing Code

// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
if array[i] == key
return i
return -1

3) How many lines are executed as a function of n in a worst-case?

T(n) =

Are lines the right unit?

12/39

Analyzing Code Big-O Notation

Assume that for every integer n, T(n) > 0 and f(n) > 0.
T(n) € O(f(n)) if there are positive constants ¢ and ng such that
The number of lines executed in the worst-case is: T(n) < cf(n) for all n > no.

T(n)=2n+1.)

Meaning: “T(n) grows no faster than f(n)

» Does the “1" matter?

» Does the “2" matter?

13/39 14 /39
Asymptotic Notation Examples
» T(n) € O(f(n)) if there are positive constants ¢ and ng such 5 5
that T(n) < cf(n) for all n > n. 10,000n" +25n € ©(n")
» T(n) € Q(f(n)) if there are positive constants ¢ and ng such 10702 € ©(n?)

that T(n) > cf(n) for all n > ng.

nlogn € O(n?)

v

T(n) € ©(f(n)) if T(n) € O(f(n)) and T(n) € Q(f(n)).

v

T(n) € o(f(n)) if for any positive constant c, there exists ng nlogn € Q(n)
such that T(n) < cf(n) for all n > n.

n +4 ¢ o(n*)

v

T(n) € w(f(n)) if for any positive constant c, there exists ng

such that T(n) > cf(n) for all n > ng.
() () n +4 € w(n?)

15/39 16 /39

Analyzing Code

// Linear search
find(key, array)

for i

if array[i] == key

return i

return -1

4) How does T(n) = 2n+ 1 behave asymptotically? What is the

0 to length(array) - 1 do

appropriate order notation? (O, o, ©, Q, w?)

Asymptotically smaller?

12000
10000
8000
6000
4000
2000
0

n® + 2n?

n3 +2n% —
100n2 4+ 1000 -+

Versus

9e+06
8e+06
Te+06
6e+-06
5e+-06
4e+06
3e+06
2e+06
le+06

0

100n% + 1000

n® 4 2n? —
100n2 + 1000 - -+

20 40 60 80 1001201401601802

17 /39

18 /39

Asymptotically smaller?

12000
10000
8000
6000
4000

2000
0

n® + 2n? versus

n® +2n% —
100n2 + 1000 - -

4 5 6 7 8 9 10

Asymptotically smaller?

no‘l Versus

3.5 -
25 et

5 logyn «--
15

W— |
0.5} .

oF

100n° + 1000

log, n

19/39

Asymptotically smaller?

§ = g bed
S Gl = g N gr W ot

o

nO.l

no-1

logyn

Asymptotically smaller?

140

n+100n°1

120
100
80
60
40]

200 o

n+100n%1 —
2n+ 10logyn -+

70
60

30
20
10

0

2.5e+18

2e+18

1.5e+18

le+18

Se+17

logy n

50f
40

logyn -+

0

2e+17 4e+17 6e+17 8e+17 le+18

2n+10logy n

n+100n"! —
2n +10logyn -+

o=
0 2e+17 4e+17 6e+17 8e+17 le+18

19/39

20/39

Asymptotically smaller?

140,

n +100n%1 versus 2n+ 10logy n

120)
100
80
60
40

200 L

n+100n%t —
2n + 10logyn -+

Typical asymptotics

Tractable

>

constant: ©(1)

logarithmic: ©(log n) (logy, n, log n> € ©(log n))
poly-log: ©(log¥n) (logk n = (log n)¥)

linear: ©(n)

log-linear: ©(nlogn)

1+¢) (c is a constant > 0)

superlinear: ©(n
quadratic: ©(n?)
cubic: ©(n%)

polynomial: ©(n*) (k is a constant)

Intractable

>

exponential: ©(c") (c is a constant > 1)

20/ 3

©

21/39

Sample asymptotic relations Analyzing Code

v

{1,log n,n%% n,100n} C O(n)

v

single operations: constant time

» {n,nlogn,n? 2"} c Q(n) > consecutive operations: sum operation times
» conditionals: condition time plus max of branch times
» {n,100n, n+ log n} C ©(n) > loops: sum of loop-body times

function call: time for function

v
v

{1,log n, n%°} C o(n)

Above all, use your head!

v

{nlog n,n? 2"} C w(n)

Runtime example #1 Runtime example #2
for i = 1 to n do i=1
for j =1 ton do while 1 < n do
sum = sum + 1 for j =1 ton do
sum = sum + 1

i++

24 /39

Runtime example #3

i=1
while i < n do
for j =1 to i do

sum sum + 1

i+=i

Runtime example #5: Mergesort

Mergesort algorithm:
Split list in half, sort first half, sort second half, merge together
Recurrence relation:

T(1) < b

T(n) <2T(n/2)+cn ifn>1

Solving recurrence:

T(n) <2T(n/2)+cn
<2(2T(n/4)+cn/2) +cn
=4T(n/4) + 2cn
< 4(2T(n/8)+ cn/4) +2cn (substitution)
=8T(n/8) + 3cn
< 2KT(n/2%) + ken
=nT(1)+cnlgn

(substitution)

(extrapolating k > 0)
(for 2K = n)
T(n) e

Runtime example #4

int max(A, n)
if(n == 1) return A[O]
return larger of A[n-1] and max(A, n-1)

Recursion almost always yields a recurrence relation:

T(1)<b
T(n)<c+T(n-1) ifn>1
Solving recurrence:
T(n)<c+c+T(n—-2) (substitution)
<c+c+c+ T(n—3) (substitution)
< kc+ T(n—k) (extrapolating k > 0)
=(n—-1)c+T(1) (for k=n—1)
<(n—1)c+b

26 /39

Runtime example #6: Fibonacci 1/2
Recursive Fibonacci:

int fib(n)
if(n==0o0orn==1) returnn
return fib(n-1) + fib(n-2)

Recurrence relation: (lower bound)

if n>1

Claim:

where ¢ = (1 +1/5)/2.
Note: ? = ¢ + 1.

28/39

27/39

29/39

Runtime example #6: Fibonacci 2/2 Example #7: Learning from analysis

Claim:
T(n) > bp" !

Proof: (by induction on n) To avoid recursive calls

Base case: T(0) > b > byt and T(1) > b= by°. > store base case values in a table
Inductive hyp: Assume T(n) > b1 for all n < k. > before calculating the value for n
Inductive step: Show true for n = k + 1. » check if the value for n is in the table
» if so, return it
T(n)>T(n—1)+T(n—-2)+c » if not, calculate it and store it in the table
> bp "2+ bp" 3 4+ ¢ (by inductive hyp.)
This strategy is called memoization and is closely related to
= bp" 3+ 1)+ ¢ oo LSBT B 8 B¢ MEMOIEEEAn y
ynamic programming.
=bp" 3% + ¢
> b1 How much time does this version take?
T(n) e
Why? Same recursive call is made numerous times.
30/39 31/39
Runtime Example #8: Longest Common Subsequence Example #9
Problem: Given two strings (A and B), find the longest sequence Find a tight bound on T(n) = Ig(n!).

of characters that appears, in order, in both strings.
Example:

A = search me B = insane method
A longest common subsequence is “same” (so is “seme”)

Applications:
DNA sequencing, revision control systems, diff, ...

32/39 33/39

Log Aside

log,, x is the exponent b must be raised to to equal x.

> lgx = log, x (base 2 is common in CS)
> log x = logyg x (base 10 is common for 10 fingered mammals)

> Inx = log, x (the natural log)
Note: ©(lgn) = ©(log n) = ©(In n) because

log. n
log. b

log, n =

for constants b, c > 1.

34/39

Problem Complexity

The complexity of a problem is the complexity of the best
algorithm for the problem.

» We can sometimes prove a lower bound on a problem'’s
complexity. (To do so, we must show a lower bound on any
possible algorithm.)

> A correct algorithm establishes an upper bound on the
problem's complexity.

Searching an unsorted list using comparisons takes Q(n) time
(lower bound).
Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes Q(nlog n) time (lower
bound).
Mergesort takes O(nlog n) time (matching upper bound).

36 /39

Asymptotic Analysis Summary

» Determine what is the input size

» Express the resources (time, memory, etc.) an algorithm

>

Aside:

requires as a function of input size

» worst case

> best case

> average case
Use asymptotic notation, 0,2, ©, to express the function
simply

Who Cares About Q(Ig(n!))?

Can You Beat O(nlog n) Sort?

Chew these over:

>

>

How many values can you represent with ¢ bits?

Comparing two values (x < y) gives you one bit of
information.

There are n! possible ways to reorder a list. We could number
them: 1,2, ... n!

Sorting basically means choosing which of those
reorderings/numbers you'll apply to your input.

How many comparisons does it take to pick among n!
numbers?

35/39

37/39

Problem Complexity Problem Complexity

Sorting: solvable in polynomial time, tractable

Traveling Salesman Problem (TSP): In 1,290,319km, can | drive to

all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/ Searching and Sorting: P, tractable

Traveling Salesman Problem: NP, intractable?

Checking a solution takes polynomial time. Current fastest way to k
Kolmogorov Complexity: Uncomputable

find a solution takes exponential time in the worst case.

Kolmogorov Complexity of a string is the length of the shortest
description of it.

Can't be computed. Pithy but hand-wavy proof: What's:

The smallest positive integer that cannot be described in
fewer than fourteen words

Are problems in NP really in P? $1,000,000 prize

38/39 39/39

