
Unit #1: Complexity Theory and Asymptotic
Analysis

CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

I Brief proof reminder

I Algorithm Analysis: Counting steps

I Asymptotic Notation

I Runtime Examples

I Problem Complexity

2 / 39

Learning Goals

I Given code, write a formula that measures the number of
steps executed as a function of the size of the input.

I Use asymptotic notation to simplify functions and to express
relations between functions.

I Know the asymptotic relations between common functions.

I Understand why to use worst-case, best-case, or average-case
complexity measures.

I Give examples of tractable, intractable, and undecidable
problems.

3 / 39

Proof by ...

I Counterexample

I show an example which does not fit with the theorem
I Thus, the theorem is false.

I Contradiction
I assume the opposite of the theorem
I derive a contradiction
I Thus, the theorem is true.

I Induction
I prove for a base case (e.g., n = 1)
I assume for all n ≤ k (for arbitrary k)
I prove for the next value (n = k + 1)
I Thus, the theorem is true.

4 / 39

Example: Proof by Induction (worked) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its
decimal digits is divisible by 3.

Proof:
Let x1x2x3 . . . xn be the decimal digits of x .
Let the sum of its decimal digits be

S(x) =
n∑

i=1

xi

We’ll prove the stronger result:

S(x) mod 3 = x mod 3.

How do we use induction?

5 / 39

Example: Proof by Induction (worked) 2/4

Base Case:
Consider any number x with one (n = 1) digit (0-9).

S(x) =
n∑

i=1

xi = x1 = x .

So, it’s trivially true that S(x) mod 3 = x mod 3 when n = 1.

6 / 39

Example: Proof by Induction (worked) 3/4

Inductive hypothesis:
Assume for an arbitrary integer k > 0 that for any number x with
n ≤ k digits:

S(x) mod 3 = x mod 3.

Inductive step:
Consider a number x with n = k + 1 digits:

x = x1x2 . . . xkxk+1.

Let z be the number x1x2 . . . xk . It’s a k-digit number so the
inductive hypothesis applies:

S(z) mod 3 = z mod 3.

7 / 39

Example: Proof by Induction (worked) 4/4

Inductive step (continued):

x mod 3 = (10z + xk+1) mod 3 (x = 10z + xk+1)

= (9z + z + xk+1) mod 3

= (z + xk+1) mod 3 (9z is divisible by 3)

= (S(z) + xk+1) mod 3 (induction hypothesis)

= (x1 + x2 + · · ·+ xk + xk+1) mod 3

= S(x) mod 3

QED (quod erat demonstrandum:“what was to be demonstrated”)

8 / 39

A Task to Solve and Analyze

Find a student’s name in a class given her student ID

9 / 39

Analysis of Algorithms

I Analysis of an algorithm gives insight into
I how long the program runs (time complexity or runtime) and
I how much memory it uses (space complexity).

I Analysis can provide insight into alternative algorithms

I Input size is indicated by a non-negative integer n (sometimes
there are multiple measures of an input’s size)

I Running time is a real-valued function of n such as:
I T (n) = 4n + 5
I T (n) = 0.5n log n − 2n + 7
I T (n) = 2n + n3 + 3n

10 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10

100 1,000 10,000 105 106 109

log n 1ps

2ps 3ps 4ps 5ps 6ps 9ps

n 10ps

100ps 1ns 10ns 100ns 1µs 1ms

n log n 10ps

200ps 3ns 40ns 500ns 6µs 9ms

n2 100ps

10ns 1µs 100µs 10ms 1s 1week

2n 1ns

1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100

1,000 10,000 105 106 109

log n 1ps 2ps

3ps 4ps 5ps 6ps 9ps

n 10ps 100ps

1ns 10ns 100ns 1µs 1ms

n log n 10ps 200ps

3ns 40ns 500ns 6µs 9ms

n2 100ps 10ns

1µs 100µs 10ms 1s 1week

2n 1ns 1Es

10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100 1,000

10,000 105 106 109

log n 1ps 2ps 3ps

4ps 5ps 6ps 9ps

n 10ps 100ps 1ns

10ns 100ns 1µs 1ms

n log n 10ps 200ps 3ns

40ns 500ns 6µs 9ms

n2 100ps 10ns 1µs

100µs 10ms 1s 1week

2n 1ns 1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100 1,000 10,000

105 106 109

log n 1ps 2ps 3ps 4ps

5ps 6ps 9ps

n 10ps 100ps 1ns 10ns

100ns 1µs 1ms

n log n 10ps 200ps 3ns 40ns

500ns 6µs 9ms

n2 100ps 10ns 1µs 100µs

10ms 1s 1week

2n 1ns 1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100 1,000 10,000 105

106 109

log n 1ps 2ps 3ps 4ps 5ps

6ps 9ps

n 10ps 100ps 1ns 10ns 100ns

1µs 1ms

n log n 10ps 200ps 3ns 40ns 500ns

6µs 9ms

n2 100ps 10ns 1µs 100µs 10ms

1s 1week

2n 1ns 1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100 1,000 10,000 105 106

109

log n 1ps 2ps 3ps 4ps 5ps 6ps

9ps

n 10ps 100ps 1ns 10ns 100ns 1µs

1ms

n log n 10ps 200ps 3ns 40ns 500ns 6µs

9ms

n2 100ps 10ns 1µs 100µs 10ms 1s

1week

2n 1ns 1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

n = 10 100 1,000 10,000 105 106 109

log n 1ps 2ps 3ps 4ps 5ps 6ps 9ps
n 10ps 100ps 1ns 10ns 100ns 1µs 1ms
n log n 10ps 200ps 3ns 40ns 500ns 6µs 9ms
n2 100ps 10ns 1µs 100µs 10ms 1s 1week
2n 1ns 1Es 10289s

Exasecond(Es) = 32 billion years

11 / 39

Analyzing Code

// Linear search

find(key, array)

for i = 0 to length(array) - 1 do

if array[i] == key

return i

return -1

1) What’s the input size, n?

12 / 39

Analyzing Code

// Linear search

find(key, array)

for i = 0 to length(array) - 1 do

if array[i] == key

return i

return -1

2) Should we assume a worst-case, best-case, or average-case input
of size n?

12 / 39

Analyzing Code

// Linear search

find(key, array)

for i = 0 to length(array) - 1 do

if array[i] == key

return i

return -1

3) How many lines are executed as a function of n in a worst-case?

T (n) =

Are lines the right unit?

12 / 39

Analyzing Code

The number of lines executed in the worst-case is:

T (n) = 2n + 1.

I Does the “1” matter?

I Does the “2” matter?

13 / 39

Big-O Notation

Assume that for every integer n, T (n) ≥ 0 and f (n) ≥ 0.

T (n) ∈ O(f (n)) if there are positive constants c and n0 such that

T (n) ≤ cf (n) for all n ≥ n0.

Meaning: “T (n) grows no faster than f (n)”

14 / 39

Asymptotic Notation

I T (n) ∈ O(f (n)) if there are positive constants c and n0 such
that T (n) ≤ cf (n) for all n ≥ n0.

I T (n) ∈ Ω(f (n)) if there are positive constants c and n0 such
that T (n) ≥ cf (n) for all n ≥ n0.

I T (n) ∈ Θ(f (n)) if T (n) ∈ O(f (n)) and T (n) ∈ Ω(f (n)).

I T (n) ∈ o(f (n)) if for any positive constant c , there exists n0
such that T (n) < cf (n) for all n ≥ n0.

I T (n) ∈ ω(f (n)) if for any positive constant c , there exists n0
such that T (n) > cf (n) for all n ≥ n0.

15 / 39

Examples

10, 000n2 + 25n ∈ Θ(n2)

10−10n2 ∈ Θ(n2)

n log n ∈ O(n2)

n log n ∈ Ω(n)

n3 + 4 ∈ o(n4)

n3 + 4 ∈ ω(n2)

16 / 39

Analyzing Code

// Linear search

find(key, array)

for i = 0 to length(array) - 1 do

if array[i] == key

return i

return -1

4) How does T (n) = 2n + 1 behave asymptotically? What is the
appropriate order notation? (O, o, Θ, Ω, ω?)

17 / 39

Asymptotically smaller?

n3 + 2n2 versus 100n2 + 1000

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

n3 + 2n2

100n2 + 1000

18 / 39

Asymptotically smaller?

n3 + 2n2 versus 100n2 + 1000

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

n3 + 2n2

100n2 + 1000

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

20 40 60 80 100120140160180200

n3 + 2n2

100n2 + 1000

18 / 39

Asymptotically smaller?

n0.1 versus log2 n

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

n0.1

log2 n

19 / 39

Asymptotically smaller?

n0.1 versus log2 n

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

n0.1

log2 n

0

10

20

30

40

50

60

70

0 2e+17 4e+17 6e+17 8e+17 1e+18

n0.1

log2 n

19 / 39

Asymptotically smaller?

n + 100n0.1 versus 2n + 10 log2 n

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

n+ 100n0.1

2n+ 10 log2 n

20 / 39

Asymptotically smaller?

n + 100n0.1 versus 2n + 10 log2 n

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

n+ 100n0.1

2n+ 10 log2 n

0

5e+17

1e+18

1.5e+18

2e+18

2.5e+18

0 2e+17 4e+17 6e+17 8e+17 1e+18

n+ 100n0.1

2n+ 10 log2 n

20 / 39

Typical asymptotics

Tractable

I constant: Θ(1)

I logarithmic: Θ(log n) (logb n, log n2 ∈ Θ(log n))

I poly-log: Θ(logkn) (logk n ≡ (log n)k)

I linear: Θ(n)

I log-linear: Θ(n log n)

I superlinear: Θ(n1+c) (c is a constant > 0)

I quadratic: Θ(n2)

I cubic: Θ(n3)

I polynomial: Θ(nk) (k is a constant)

Intractable

I exponential: Θ(cn) (c is a constant > 1)

21 / 39

Sample asymptotic relations

I {1, log n, n0.9, n, 100n} ⊂ O(n)

I {n, n log n, n2, 2n} ⊂ Ω(n)

I {n, 100n, n + log n} ⊂ Θ(n)

I {1, log n, n0.9} ⊂ o(n)

I {n log n, n2, 2n} ⊂ ω(n)

22 / 39

Analyzing Code

I single operations: constant time

I consecutive operations: sum operation times

I conditionals: condition time plus max of branch times

I loops: sum of loop-body times

I function call: time for function

Above all, use your head!

23 / 39

Runtime example #1

for i = 1 to n do

for j = 1 to n do

sum = sum + 1

24 / 39

Runtime example #2

i = 1

while i < n do

for j = i to n do

sum = sum + 1

i++

25 / 39

Runtime example #3

i = 1

while i < n do

for j = 1 to i do

sum = sum + 1

i += i

26 / 39

Runtime example #4

int max(A, n)

if(n == 1) return A[0]

return larger of A[n-1] and max(A, n-1)

Recursion almost always yields a recurrence relation:

T (1) ≤ b

T (n) ≤ c + T (n − 1) if n > 1

Solving recurrence:

T (n) ≤ c + c + T (n − 2) (substitution)

≤ c + c + c + T (n − 3) (substitution)

≤ kc + T (n − k) (extrapolating k > 0)

= (n − 1)c + T (1) (for k = n − 1)

≤ (n − 1)c + b

T (n) ∈
27 / 39

Runtime example #5: Mergesort
Mergesort algorithm:
Split list in half, sort first half, sort second half, merge together
Recurrence relation:

T (1) ≤ b

T (n) ≤ 2T (n/2) + cn if n > 1

Solving recurrence:

T (n) ≤ 2T (n/2) + cn

≤ 2(2T (n/4) + cn/2) + cn (substitution)

= 4T (n/4) + 2cn

≤ 4(2T (n/8) + cn/4) + 2cn (substitution)

= 8T (n/8) + 3cn

≤ 2kT (n/2k) + kcn (extrapolating k > 0)

= nT (1) + cn lg n (for 2k = n)

T (n) ∈
28 / 39

Runtime example #6: Fibonacci 1/2

Recursive Fibonacci:

int fib(n)

if(n == 0 or n == 1) return n

return fib(n-1) + fib(n-2)

Recurrence relation: (lower bound)

T (0) ≥ b

T (1) ≥ b

T (n) ≥ T (n − 1) + T (n − 2) + c if n > 1

Claim:
T (n) ≥ bϕn−1

where ϕ = (1 +
√

5)/2.
Note: ϕ2 = ϕ+ 1.

29 / 39

Runtime example #6: Fibonacci 2/2

Claim:
T (n) ≥ bϕn−1

Proof: (by induction on n)
Base case: T (0) ≥ b > bϕ−1 and T (1) ≥ b = bϕ0.
Inductive hyp: Assume T (n) ≥ bϕn−1 for all n ≤ k .
Inductive step: Show true for n = k + 1.

T (n) ≥ T (n − 1) + T (n − 2) + c

≥ bϕn−2 + bϕn−3 + c (by inductive hyp.)

= bϕn−3(ϕ+ 1) + c

= bϕn−3ϕ2 + c

≥ bϕn−1

T (n) ∈
Why? Same recursive call is made numerous times.

30 / 39

Example #7: Learning from analysis

To avoid recursive calls

I store base case values in a table
I before calculating the value for n

I check if the value for n is in the table
I if so, return it
I if not, calculate it and store it in the table

This strategy is called memoization and is closely related to
dynamic programming.

How much time does this version take?

31 / 39

Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence
of characters that appears, in order, in both strings.

Example:

A = search me B = insane method

A longest common subsequence is “same” (so is “seme”)

Applications:
DNA sequencing, revision control systems, diff, ...

32 / 39

Example #9

Find a tight bound on T (n) = lg(n!).

33 / 39

Log Aside

logb x is the exponent b must be raised to to equal x .

I lg x ≡ log2 x (base 2 is common in CS)

I log x ≡ log10 x (base 10 is common for 10 fingered mammals)

I ln x ≡ loge x (the natural log)

Note: Θ(lg n) = Θ(log n) = Θ(ln n) because

logb n =
logc n

logc b

for constants b, c > 1.

34 / 39

Asymptotic Analysis Summary

I Determine what is the input size
I Express the resources (time, memory, etc.) an algorithm

requires as a function of input size
I worst case
I best case
I average case

I Use asymptotic notation, O,Ω,Θ, to express the function
simply

35 / 39

Problem Complexity

The complexity of a problem is the complexity of the best
algorithm for the problem.

I We can sometimes prove a lower bound on a problem’s
complexity. (To do so, we must show a lower bound on any
possible algorithm.)

I A correct algorithm establishes an upper bound on the
problem’s complexity.

Searching an unsorted list using comparisons takes Ω(n) time
(lower bound).
Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes Ω(n log n) time (lower
bound).
Mergesort takes O(n log n) time (matching upper bound).

36 / 39

Aside: Who Cares About Ω(lg(n!))?

Can You Beat O(n log n) Sort?

Chew these over:

I How many values can you represent with c bits?

I Comparing two values (x < y) gives you one bit of
information.

I There are n! possible ways to reorder a list. We could number
them: 1, 2, . . . , n!

I Sorting basically means choosing which of those
reorderings/numbers you’ll apply to your input.

I How many comparisons does it take to pick among n!
numbers?

37 / 39

Problem Complexity

Sorting: solvable in polynomial time, tractable
Traveling Salesman Problem (TSP): In 1,290,319km, can I drive to
all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to
find a solution takes exponential time in the worst case.

Are problems in NP really in P? $1,000,000 prize

38 / 39

Problem Complexity

Searching and Sorting: P, tractable
Traveling Salesman Problem: NP, intractable?
Kolmogorov Complexity: Uncomputable

Kolmogorov Complexity of a string is the length of the shortest
description of it.

Can’t be computed. Pithy but hand-wavy proof: What’s:

The smallest positive integer that cannot be described in
fewer than fourteen words

39 / 39

