Unit #1: Complexity Theory and Asymptotic Analysis

CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

- ► Brief proof reminder
- Algorithm Analysis: Counting steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given code, write a formula that measures the number of steps executed as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- ▶ Know the asymptotic relations between common functions.
- Understand why to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Proof by ...

- Counterexample
 - ▶ show an example which does not fit with the theorem
 - ▶ Thus, the theorem is false.
- Contradiction
 - assume the opposite of the theorem
 - derive a contradiction
 - ▶ Thus, the theorem is true.
- Induction
 - prove for a base case (e.g., n = 1)
 - ▶ assume for all $n \le k$ (for arbitrary k)
 - prove for the next value (n = k + 1)
 - ► Thus, the theorem is true.

Example: Proof by Induction (worked) 1/4

Theorem:

A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.

Proof:

Let $x_1x_2x_3...x_n$ be the decimal digits of x. Let the sum of its decimal digits be

$$S(x) = \sum_{i=1}^{n} x_i$$

We'll prove the stronger result:

$$\longrightarrow$$
 $S(x) \mod 3 = x \mod 3$.

How do we use induction?

$$174$$
 1200
 $5(12) = 3$

5(174)=12

Example: Proof by Induction (worked) 2/4

Base Case:

Consider any number x with one (n = 1) digit (0-9).

$$S(x) = \left(\sum_{i=1}^{n} x_i\right) = x_1 = x.$$

So, it's trivially true that $S(x) \mod 3 = x \mod 3$ when n = 1.

Example: Proof by Induction (worked) (3/4)

Inductive hypothesis:

Assume for an arbitrary integer k > 0 that for any number x with $n \le k$ digits:

$$S(x) \mod 3 = x \mod 3$$
.

Inductive step:

Consider a number x with n = k + 1 digits:

with
$$n = k + 1$$
 digits:

$$x = x_1 x_2 \dots x_k x_{k+1}.$$

 $\frac{\text{Example}}{\chi = 123}$ K = 2

Let z be the number $x_1x_2...x_k$ inductive hypothesis applies:

It's a k-digit number so the

tive hypothesis applies:
$$S(z) \mod 3 = z \mod 3.$$
 by I , H .

Example: Proof by Induction (worked) 4/4 $\times = 127$

Inductive step (continued):

$$x \mod 3 = (10z + x_{k+1}) \mod 3$$
 $(x = 10z + x_{k+1})$
 $= (9z + z + x_{k+1}) \mod 3$ $(9z \text{ is divisible by 3})$
 $= (2 + x_{k+1}) \mod 3$ (induction hypothesis)
 $= (x_1 + x_2 + \dots + x_k + x_{k+1}) \mod 3$
 $= S(x) \mod 3$

QED (quod erat demonstrandum: "what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID array of objects Sort by Is Insert? delete? move to front more complex structure Skiplist, search tree Does it matter

Analysis of Algorithms

- Analysis of an algorithm gives insight into
 - how long the program runs (time complexity or runtime) and
 - how much memory it uses (space complexity).
- Analysis can provide insight into alternative algorithms
- ▶ Input size is indicated by a non-negative integer *n* (sometimes there are multiple measures of an input's size)
- ▶ Running time is a real-valued function of *n* such as:
 - ► $T(\underline{n}) = 4n + 5$
 - $T(n) = 0.5n \log n 2n + 7$
 - $T(n) = 2^n + n^3 + 3n$

0-12

Suppose a computer executes 1op per picosecond (trillionth):

n =	10			
log n	1ps			
n	10ps			
$n \log n$	10ps			
n^2	100ps			
2 ⁿ	1ns			
		nc - namara cond	(111,-11)	15-9

(billouth) (0 sec

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100
log n	1ps	2ps
n	10ps	100ps
n log n	10ps	200ps
n^2	100ps	10ns
2 ⁿ	1ns	1Es

Exasecond(Es) =
$$32$$
 billion years 37

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000					
log n	1ps	2ps	3ps					
n	10ps	100ps	1ns	ſ				
$n \log n$	10ps	200ps	3ns	microsecond = milionth				
n^2	100ps	10ns	1μ s -	- microsecuth				
2^{n}	1ns	1Es	10^{289} s	_				
$2''$ Ins 1Es 10^{209} s								
Exasecond(Es) = 32 billion years								

11/39

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	
log n	1ps	2ps	3ps	4ps	
n	10ps	100ps	1ns	10ns	
$n \log n$	10ps	200ps	3ns	40ns	
n^2	100ps	10ns	1μ s	$100 \mu extsf{s}$	
2 ⁿ	1ns	1Es	10^{289} s		

 ${\sf Exasecond}({\sf Es}) = 32 \ {\sf billion \ years}$

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	
log n	1ps	2ps	3ps	4ps	5ps	
n	10ps	100ps	1ns	10ns	100ns	
$n \log n$	10ps	200ps	3ns	40ns	500ns	
n^2	100ps	10ns	1μ s	100μ s	10ms	
2^n	1ns	1Es	10^{289} s		K	millisecond

 ${\sf Exasecond}({\sf Es}) = 32 \ {\sf billion \ years}$

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	10^{6}
log n	1ps	2ps	3ps	4ps	5ps	6ps
n	10ps	100ps	1ns	10ns	100ns	1μ s
$n \log n$	10ps	200ps	3ns	40ns	500ns	6μ s
n^2	100ps	10ns	1μ s	$100 \mu extsf{s}$	10ms	(Is)
2^n	1ns	1Es	10^{289} s			

 ${\sf Exasecond}({\sf Es}) = 32 \ {\sf billion \ years}$

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10^{5}	10^{6}	10^{9}
log n	1ps	2ps	3ps	4ps	5ps	6ps	9ps
n	10ps	100ps	1ns	10ns	100ns	1μ s	1ms
$n \log n$	10ps	200ps	3ns	40ns	500ns	$6 \mu extsf{s}$	9ms
n^2	100ps	10ns	1μ s	$100 \mu extsf{s}$	10ms	1s	1week
2^n	1ns	1Es	10^{289} s				

Exasecond(Es) = 32 billion years

pine tree 3×109 base phins

```
// Linear search

find(key, array)

for i = 0 to length(array) - 1 do

if array[i] == key

return i

return -1

1) What's the input size, n?

// Linear search

// Expensive

// Key length would

// Linear search

// Linear searc
```

```
// Linear search
find(key, array)
  for i = 0 to length(array) - 1 do
    if array[i] == key
       return i
  return -1
2) Should we assume a worst-case, best-case, or average-case input
of size n?
               n doesn't tell us enough about
                              the input
               Some Size n
                  ome Size n arrays
- have key in array lo7
- don't have key at all
```

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
   if array[i] == key
     return i
return -1
```

3) How many lines are executed as a function of n in a worst-case?

$$T(n) = 2n + 1$$

Are lines the right unit?

maybe

The number of lines executed in the worst-case is:

$$T(n)=2n+1.$$

- ▶ Does the "1" matter? Maybe
- Does the "2" matter? Maybe
 but as n gets big high order form
 dominates
 as technology changes, time per line
 changes by constant factor

Big-O Notation
$$f$$
 of functions

Assume that for every integer n , $T(n) \ge 0$ and $f(n) \ge 0$.

 $T(n) \in O(f(n))$ if there are positive constants c and n_0 such that

$$T(n) \leq cf(n)$$
 for all $n \geq n_0$.

Meaning: "
$$T(n)$$
 grows no faster than $f(n)$ "

$$T(n) = 2n+1 \qquad f(n) = n$$

Claim $2n+1 \in O(n)$

proof $2n+1 \leq 3n$ for $n \geq 1$

$$1 \leq n \qquad (subtract 2n from each side of "\leq")$$

fand m_{i} for $n \geq 1$ for $n \geq 1$

Asymptotic Notation 13.4 OL ▶ $T(n) \in O(f(n))$ if there are positive constants c and n_0 such n_0 that $T(n) \leq cf(n)$ for all $n \geq n_0$. iff $f(n) \in O(T(n))$ ▶ $T(n) \in \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \ge cf(n)$ for all $n \ge n_0$. ▶ $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$. ▶ $T(n) \in o(f(n))$ if for any positive constant c, there exists n_0 such that T(n) < cf(n) for all $n \ge n_0$. ▶ $T(n) \in \omega(f(n))$ if for any positive constant c, there exists n_0 such that T(n) > cf(n) for all $n \ge n_0$. not all pairs of function 1+5in(n) are related N 15/39

Examples

amples

$$0: \log \log n^{2} + 25n \leq \log 25n^{2} + 25n \leq \log 25n^{2}$$

$$10,000n^{2} + 25n \in \Theta(n^{2})$$

$$10^{-10}n^{2} \in \Theta(n^{2})$$

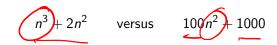
$$n \log n \in O(n^{2})$$

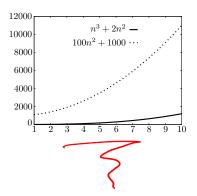
$$n \log n \in O(n^{2})$$

$$n \log n \in \Omega(n)$$

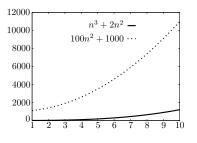
$$n^{3} + 4 \in \omega(n^{2})$$

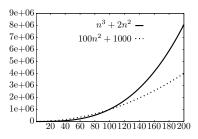
```
// Linear search
find(key, array)
  for i = 0 to length(array) - 1 do
    if array[i] == key
      return i
  return -1
4) How does T(n) = 2n + 1 behave asymptotically? What is the
appropriate order notation? (O, o, \Theta, \Omega, \omega?)
               my algorithm is fast. It's O(h)
               my alg. is slow. It's Q(n)
```

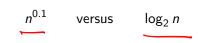


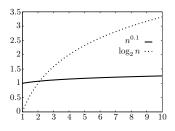


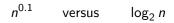
$$n^3 + 2n^2$$
 versus $100n^2 + 1000$

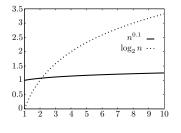


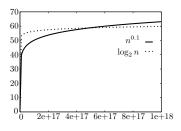


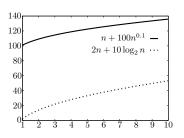


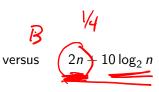


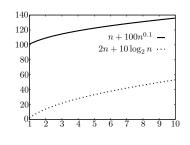


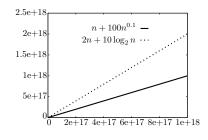


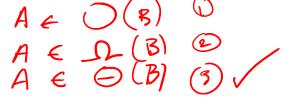










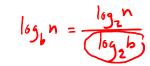


Typical asymptotics

- constant: Θ(1)
- ▶ logarithmic: $\Theta(\log n)$ ($\log_b n$, $\log n^2 \in \Theta(\log n)$)
- ▶ poly-log: $\Theta(\log^k n)$ ($\log^k n \equiv (\log n)^k$)
- ▶ linear: $\Theta(n)$
- ▶ log-linear: $\Theta(n \log n)$
- superlinear: $\Theta(n^{1+c})$ (c is a constant > 0)
- quadratic: $\Theta(n^2)$
- cubic: $\Theta(n^3)$
- ▶ polynomial: $\Theta(n^k)$ (k is a constant)

Intractable

• exponential: $\Theta(c^n)$ (c is a constant > 1)



Sample asymptotic relations

- $\blacktriangleright \{1, \log n, n^{0.9}, n, 100n\} \bigcirc O(n)$

- single operations: constant time
- consecutive operations: sum operation times
- conditionals: condition time plus max of branch times
- ▶ loops: sum of loop-body times
- function call: time for function

Above all, use your head!

because of worst ca

$$=2n^2+n$$

$$\Theta(n^2)$$

Runtime example #2

Count sum = sum +1

Runtime example #3

$$i = 1$$

while $i < n$ do
for $j = 1$ to i do
 $sum = sum + 1$
 $i = 1$

Runtime example #4

```
int max(A, n)
\rightarrow if( n == 1) return A[0]
   return larger of A[n-1] and max(A, n-1)
Recursion almost always yields a recurrence relation: (like b = 1)
                                        if n > 1
               T(n) \leq T(n-1)
Solving recurrence:
      T(n) \leq c + c + T(n-2)
                                    (substitution)
            \leq c + c + c + T(n-3) (substitution)
            \leq (kc) + T(n-k)
                                    (extrapolating k > 0)
           (=)(n-1)c + T(1)
                                    (for k = n - 1)
            \leq (n-1)c+b
                       - only get O from this analysis
```

Verify claim T(n) < (n-1) (+b Front (by induction on n) base + (1) 66 V ind, hyp claim free for T(n) T(n) = (n-1) < + b IN step T(n+1) < (+Th) by det < c + (n-1) c+b by I.H. = n.c +b /

Runtime example #5: Mergesort

Mergesort algorithm:

-6W fine Split list in half, sort first half, sort second half, merge together 2 subproblems of size % Recurrence relation:

$$T(1) \le b$$
 $T(n) \le 2T(n/2) + cn$ if $n > 1$

Solving recurrence:

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2(2T(n/4) + cn/2) + cn \quad \text{(substitution)}$$

$$= 4T(n/4) + 2cn$$

$$\leq 4(2T(n/8) + cn/4) + 2cn \quad \text{(substitution)}$$

$$= 8T(n/8) + 3cn$$

$$\leq 2^k T(n/2^k) + kcn \quad \text{(extrapolating } k > 0)$$

$$= nT(1) + cn \lg n \leq n \quad \text{(for } 2^k = n)$$

$$n) \in (n \log n)$$

Runtime example #6: Fibonacci 1/2

Recursive Fibonacci:

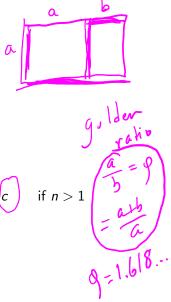
int fib(n)
 if(n == 0 or n == 1) return n
 return fib(n-1) + fib(n-2)

$$T(0) \ge b$$
 $T(1) \ge b$
 $T(n) \ge T(n-1) + T(n-2) + c$ if $n > 1$

Claim:

where
$$\varphi=(1+\sqrt{5})/2$$
. Note: $\varphi^2=\varphi+1$.

$$T(n) \geq b\varphi^{n-1}$$



Runtime example #6: Fibonacci 2/2

Claim:

$$T(n) \ngeq b\varphi^{n-1}$$

Proof: (by induction on n)

Base case: $T(0) \ge b > b\varphi^{-1}$ and $T(\underline{1}) \ge b = b\varphi^{0}$. Inductive hyp: Assume $T(n) > b\varphi^{n-1}$ for all n < k.

Inductive step: Show true for n = k + 1.

tive step: Show true for
$$n = k + 1$$
.

$$T(n) \geq T(n-1) + T(n-2) + c$$

$$\geq b\varphi^{n-2} + b\varphi^{n-3} + c \qquad \text{(by inductive hyp.)}$$

$$= b\varphi^{n-3}(\varphi + 1) + c \qquad \text{by property of } \varphi$$

$$\geq b\varphi^{n-1}$$

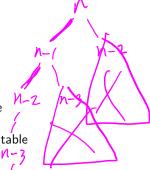
$$T(n) \in \Omega(\mathcal{Y}^n)$$

Why? Same recursive call is made numerous times.

Example #7: Learning from analysis

To avoid recursive calls

- store base case values in a table
- before calculating the value for n
 - check if the value for n is in the table
 - ▶ if so, return it
 - if not, calculate it and store it in the table



This strategy is called <u>memoization</u> and is closely related to dynamic programming.

How much time does this version take?

Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example:
$$|B| = M$$

$$A = \underbrace{\text{search me}}_{\text{[D]000}} B = \text{insane method}$$

A longest common subsequence is "same" (so is "seme")

Applications:

DNA sequencing, revision control systems, diff, ...

Example #9

Log Aside

 $\log_b x$ is the exponent b must be raised to to equal x.

- ▶ $\lg x \equiv \log_2 x$ (base 2 is common in CS)
- ▶ $\log x \equiv \log_{10} x$ (base 10 is common for 10 fingered mammals)
- ▶ $\ln x \equiv \log_e x$ (the natural log)

Note: $\Theta(\lg n) = \Theta(\log n) = \Theta(\ln n)$ because

$$\log_b n = \frac{\log_c n}{\log_c b}$$

for constants b, c > 1.

Asymptotic Analysis Summary

- Determine what is the input size
- ► Express the resources (time, memory, etc.) an algorithm requires as a function of input size
 - worst case
 - best case
 - average case
- ▶ Use asymptotic notation, O, Ω, Θ , to express the function simply

Problem Complexity

The **complexity of a problem** is the complexity of the best algorithm for the problem.

- We can sometimes prove a lower bound on a problem's complexity. (To do so, we must show a lower bound on any possible algorithm.)
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).

Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg(n!))$?

Can You Beat $\sqrt{(n \log n)}$ Sort?

Chew these over:

- ▶ How many values can you represent with c bits?
- ▶ Comparing two values (x < y) gives you one bit of information.
- ► There are *n*! possible ways to reorder a list. We could number them: 1, 2, . . . , *n*!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n! numbers?

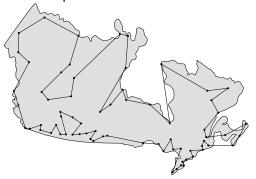
Problem Complexity

Sorting: solvable in polynomial time, tractable

Traveling Salesman Problem (TSP): In 1,290,319km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.

NP



Are problems in NP really in P? \$1,000,000 prize

Problem Complexity

Searching and Sorting: P, tractable

Traveling Salesman Problem: NP, intractable?

Kolmogorov Complexity: Uncomputable

Kolmogorov Complexity of a string is the length of the shortest description of it.

Can't be computed. Pithy but hand-wavy proof: What's:

The smallest positive integer that cannot be described in fewer than fourteen words