Unit \#1: Complexity Theory and Asymptotic Analysis

CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch
2016W1

Unit Outline

- Brief proof reminder
- Algorithm Analysis: Counting steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given code, write a formula that measures the number of steps executed as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- Know the asymptotic relations between common functions.
- Understand why to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Review

- Counterexample
- show an example which does not fit with the theorem
- Thus, the theorem is false.
- Contradiction
- assume the opposite of the theorem
- derive a contradiction \quad ex ample: $h<n$
- Thus, the theorem is true.
- Induction
- prove for a base case (e.g., $n=1$)
- assume for al $n \leq k$ for arbitrary $k)$ induration Step
- Thus, the theorem is true.

Example: Proof by Induction (worked) 1/4

Theorem:
A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3 .

Believe it.
Proof: $x \quad S(x)$
Let $x_{1} x_{2} x_{3} \ldots x_{n}$ be the decimal digits of x. Let the sum of its decimal digits be

$$
S(x)=\sum_{i=1}^{n} x_{i}
$$

We'll prove the stronger result:

$$
S(x) \bmod 3=x \bmod 3
$$

How do we use induction?

Example: Proof by Induction (worked) 2/4

Base Case:
Consider any number x with one ($n=1$) digit (0-9).

$$
S(x)=\sum_{i=1}^{n} x_{i}=x_{1}=x
$$

So, it's trivially true that $S(x) \bmod 3=x \bmod 3$ when $n=1$.

Example: Proof by Induction (worked) 3/4

Inductive hypothesis)
Assume for an arbitrary integer $k>0$ that for any number x with $n \leq k$ digits: \quad Not a proof!

$$
S(x) \bmod 3=x \bmod 3
$$

Inductive step:
Consider a number x with $n=k+1$ digits:

$$
\begin{aligned}
& \text { Example: } \\
& x=234 \\
& x_{1}=2, x_{2}=3, x_{3}=4 \\
& z=23
\end{aligned}
$$

Let \underline{z} be the number $x_{1} x_{2} \ldots x_{k}$. It's a k-digit number so the inductive hypothesis applies:

$$
\begin{gathered}
\text { by i.h.: } S(z) \bmod 3=z \bmod 3 \\
x=10 \cdot z+x_{k+1}
\end{gathered}
$$

Example: Proof by Induction (worked) 4/4
Inductive step (continued):

$$
\begin{aligned}
x \bmod 3 & =\left(10 z+x_{k+1}\right) \bmod 3 & & \left(x=10 z+x_{k+1}\right) \\
& =\left(9 z+z+x_{k+1}\right) \bmod 3 & & \\
& =\left(0_{+}^{+}+x_{k+1}\right) \bmod 3 & & (9 z \text { is divisible by } 3) \\
& =\left(S^{i}(z)+x_{k+1}\right) \bmod 3 & & \text { (induction hypothesis) } \\
& =\left(x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}\right) \bmod 3 & & \\
& =S(x) \bmod 3 & &
\end{aligned}
$$

QED (quod erat demonstrandum: "what was to be demonstrated")
Induction is used to prove correcthess/runningtime of algorithms that use loops or recursion.

A Task to Solve and Analyze
Find a student's name in a class given her student ID operations: Student object

- (Balance)Se arch Tree
- Skiphists
- Li arad list
- Hast map/ hash table
- Does it matter? . YES
- How to compare "spreed of al arches?
- express runtime is function of the size of the input

$$
-2 n \quad 1000 \log n
$$

Analysis of Algorithms

- Analysis of an algorithm gives insight into
- how long the program runs (time complexity or runtime) and
- how much memory it uses (space complexity).
- Analysis can provide insight into alternative algorithms
- Input size is indicated by a non-negative integer n (sometimes there are multiple measures of an input's size)
- Running time is a real-valued function of n such as:

$$
\left(\left(\begin{array}{l}
T(n)=4 n+5 \\
-T(n)=0.5 n \log n-2 n+7 \\
-T(n)=2^{n}+n^{3}+3 n \\
\# \text { operations } \\
m s \\
\# \text { of lines of code }
\end{array}\right.\right.
$$

\} will not matter when using asymptotic $(0, \Omega, \theta)$ notation

Rates of Growth

$$
10^{-12} \mathrm{~S}
$$

Suppose a computer executes lop per picosecond (trillionth):
size input

	n	10 ps
$T(4)$	$n \log n$	10 ps
	n^{2}	100 ps
	2^{n}	1 ns

nano second

$$
10^{-9}
$$

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100
$\log n$	1 ps	2 ps
n	10 ps	100 ps
$n \log n$	10 ps	200 ps
n^{2}	100 ps	10 ns
2^{n}	1 ns	1 Es

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes lop per picosecond (trillionth):

$n=$	10	100	1,000	
$\log n$	1 ps	2 ps	3 ps	
n	10 ps	100 ps	1 ns	
$n \log n$	10 ps	200 ps	3 ns	
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}{ }_{10}{ }_{10}{ }^{-6}$	

Exasecond(Es) $=32$ billion years

$$
\begin{aligned}
& 10^{18} \\
& 10^{24} \text { yottase and }
\end{aligned}
$$

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000
$\log n$	1 ps	2 ps	3 ps	4 ps
n	10 ps	100 ps	1 ns	10 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$	

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$		

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$			

Exasecond(Es) $=32$ billion years

Rates of Growth

Suppose a computer executes 1op per picosecond (trillionth):

$n=$	10	100	1,000	10,000	10^{5}	10^{6}	10^{9}
$\log n$	1 ps	2 ps	3 ps	4 ps	5 ps	6 ps	9 ps
n	10 ps	100 ps	1 ns	10 ns	100 ns	$1 \mu \mathrm{~s}$	1 ms
$n \log n$	10 ps	200 ps	3 ns	40 ns	500 ns	$6 \mu \mathrm{~s}$	9 ms
n^{2}	100 ps	10 ns	$1 \mu \mathrm{~s}$	$100 \mu \mathrm{~s}$	10 ms	1 s	1 week
2^{n}	1 ns	1 Es	$10^{289} \mathrm{~s}$				
Exasecond(Es) $=32$ billion years		7.5×10^{9}					

Analyzing Code

$$
T(y)=\text { th lines of code executed }
$$

```
// Linear search
find(key, array)
    for i = 0 to length(array) - 1 do
        if array[i] == ley
            return i < is this expensive?
    return -1
                ->
```

1) What's the input size, n ?

$$
\begin{array}{r}
n=\text { size of the array } \\
(k=\text { size of kegs) } \\
\text { optional } \\
\text { let's assume }==\text { takes constant } \\
\text { time }
\end{array}
$$

Analyzing Code

// Linear search
find (key, array)
for $i=0$ to length(array) - 1 do if array[i] == key
return i
return -1
2) Should we assume a worst-case, best-case, or average-case input of size n ?

Analyzing Code

// Linear search

$$
n=\text { tl size of array }
$$

find(key, array)

$$
\begin{aligned}
& \text { for } i=0 \text { to length(array) }-1 \text { do } \leftarrow n \text { times } \\
& \quad \text { n times } \\
& \quad \text { return } i \\
& \text { return }-1 \in 1 \text { time }
\end{aligned}
$$

3) How many lines are executed as a function of n in a worst-case?
$T(n)=2 n+1$
Are lines the right unit?

Analyzing Code

The number of lines executed in the worst-case is:

$$
T(n)=(21)+1 .
$$

- Does the " 1 " matter? .. n gets big, $2 n$ term will
- Does the " 2 " matter? dominate \rightarrow NO
hardware also Gerygs this constant

$$
\rightarrow N O
$$

Big-O Notation ..allows us to abstract from things that dort matter (usually)
Assume that for every integer $n, T(n) \geq 0$ and $f(n) \geq 0$.
$T(n) \in O(f(n))$ if there are positive constants (C) and $\left(n_{0}\right)$ such that

$$
T(n) \leq\left(c f(n) \text { for all } n \geq n_{0} .\right.
$$

for big enough' values
Meaning: " $T(n)$ grows no faster than $f(n)$ " of n

$$
T(n)=2 n+1
$$

$$
f(n)=n
$$

" $2 n+1$ grows no faster than n ".
Qaim: $\quad 2 n+1 \in O(n), C$
Proof: $2 n+1 \leqslant 3 . n^{c}$ for $n \geq 0^{n_{0}}$

Asymptotic Notation
Claim:

$$
T(n) \in \Omega(f(n)) \Leftrightarrow f(n) \in O(T(n))
$$

big-0
$T(n) \in O(f(n))$ if there foe positive constants c and n_{0} such that $T(n) \leqslant c f(n)$ for all $n \geq n_{0}$.

$$
T(n){ }^{\prime \prime} \leq f(n)
$$

big-omega

- $T(n) \in \Omega(f(n))$ if there are positive constants c and n_{0} such that $T(n) \bigotimes \subset f(n)$ for all $n \geq n_{0}$.

$$
\begin{aligned}
& T(n)^{\prime \prime} \geqslant{ }^{\prime \prime} f(n) \\
& T(n)=" f(n)
\end{aligned}
$$

big-cheta
$\in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.

- $T(n) \in$ little -o
- $T(n) \in o(f(n))$ if for any positive constant c, there exists n_{0} such that $T(n)<c f(n)$ for all $n \geq n_{0}$.
little-omegar $\lim _{n \rightarrow \infty} \frac{T(n)}{f(n)}=\left\{\begin{array}{c}0 \quad T(n) \in O^{T}(f(n))^{\prime \prime}<^{\prime \prime} f(n) \\ 0<x<\infty\end{array}\right.$
- $T(n) \in \omega(f(n))$ if for any ${ }^{n}$ positive $\overline{f(y)}=\left\{\begin{array}{l}0<x<\infty \text {, } T(n) \in \theta_{n}(f(n)) \\ c, \text { there exists } n_{0}\end{array}\right.$ such that $T(n)>c f(n)$ for all $n \geq n_{0}$. (so $\ddots \quad T(n) ">" f(n)$

$$
T(n) \in \omega(f(n))
$$

Example: $n^{1+\sin (n)}$ vs. n... cannot be compared

plot	x
	$\log _{2}(x)$

$$
\begin{aligned}
& (n)^{\prime}=1 \\
& (0 n)=\frac{1}{n} \\
& (x \text { from }-2.664 \text { to } 2.664) \\
& -\operatorname{Re}(x) \\
& \text { (} \frac{\operatorname{Re}(\log (x))}{\log (2)}
\end{aligned}
$$

Plot:

Analyzing Code

```
// Linear search
find(key, array)
    for i = 0 to length(array) - 1 do
        if array[i] == key
            return i
    return -1
        \downarrowworst-case
```

4) How does $T(n)=2 n+1$ behave asymptotically? What is the appropriate order notation? $(O, o, \Theta, \Omega, \omega$?)
worst-case

$$
\underline{T}(n) \in \theta(n)
$$

$T(n) \in O(n)$.. my alg. is fast... upper bound
$T(n) \in \Omega(n)$.. Your alg. is slow.. lower bound
$T(n) \in \theta(n)$.. exact ansuly \quad what can we say about running time of linear search alg.
Q. What can we say about running time of hineat $A(n) \in O(n)$. $T(n) \in \Omega(1)$.

Asymptotically smaller?

$$
\begin{gathered}
n^{3}+2 n^{2} \\
\\
\qquad \quad ?
\end{gathered}
$$

Asymptotically smaller?

$180 n^{2}+1800$
$\in \Omega$

$c=1$
$n_{0} \sim 100$

Asymptotically smaller?

$$
n^{0.1} \quad \text { versus } \quad \log _{2} n
$$

Asymptotically smaller?

Asymptotically smaller?

$$
\begin{array}{cc}
n+100 n^{0.1} & \text { versus } \\
& ?
\end{array}
$$

Asymptotically smaller?

lower order terms can be ignored

$$
\left.\begin{array}{c}
n+102 n^{0.1} \\
\\
\in \theta
\end{array}\right)
$$

Typical asymptotics

- log-linear: $\Theta(n \log n)$
- superlinear: $\Theta\left(n^{1+c}\right)(c$ is a constant $>0)$
- quadratic: $\Theta\left(n^{2}\right)$
- cubic: $\Theta\left(n^{3}\right)$
- polynomial: $\Theta\left(n^{k}\right)(k$ is a constant $)$ alg. for the is orphism

Intractable $\begin{gathered}\theta\left(n^{l}{ }^{l} \log _{n}\right) \\ q \text { asipolynomial } \\ 2^{n} \in O\left(3^{n}\right) \text {, but } 2^{n} \notin \theta\left(3^{n}\right)\end{gathered}$

- exponential: $\Theta\left({\underset{\sim}{c}}^{n}\right)(c$ is a constant $>1) 2^{n} \in o\left(3^{n}\right)$

Sample asymptotic relations

- $\left\{1, \log n, n^{0.9}, n, 100 n\right\} \subset \stackrel{" s^{\prime \prime}}{O}(n)$
- $\left\{n, n \log n, n^{2}, 2^{n}\right\} \subset{ }^{\prime \prime} \Omega^{\prime \prime}(n)$ "二"
- $\{n, 100 n, n+\underset{\text { "く" }}{\log n\}} \subset \Theta(n)$
- $\left\{1, \log n, n^{0.9}\right\} \subset o(n)$
- $\left\{n \log n, n^{2}, 2^{n}\right\} \subset{ }^{\prime \prime}{ }^{\prime \prime}(n)$

Analyzing Code

- single operations: constant time
- consecutive operations: sum operation times
- conditionals: condition time plus map of branch times
- loops: sum of loop-body times
- function call: time for function

Above all, use your head!
Q String a, b;

$$
\text { if }(a==b)
$$

Runtime example \#1
Counting all lines exerted!

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { for } i=1 \text { to } n \text { do } \\
\text { for } j=1 \text { to } n \text { do }=\operatorname{sum}+1
\end{array} \in 1\right] \sum_{j=1}^{n} 2^{(H-i)}=2 n \\
& \sum_{i=1}^{n}(2 n+1)= \\
& \\
& \in \theta\left(n^{2}\right)
\end{aligned}
$$

Runtime example \#2
Let $T(n)$ be
how many times $s a m=s u m+1$

$$
i=1
$$

$\left[\begin{array}{l}\text { while } i<n \text { do } \\ \text { for } j=\text { i to } n \text { do } \\ \text { sum sum }+1 \\ i++\quad \text { outer loop }\end{array}\right]$ is executed?

$$
\begin{aligned}
& \begin{aligned}
\left.\triangle \rightarrow(n)=\sum_{i=1}^{n-1}(n-i+1)\right)= & \begin{array}{c}
\text { arithmetic series } \\
n+(n-1)+\ldots+2
\end{array} \\
& =\frac{n+2}{2} \cdot(n-1)=\frac{n^{2}}{2}+\frac{n}{2}-1
\end{aligned} \\
& S=a+(a-1)+\ldots+(b-1)+b \\
& S=b+(b-1)+\ldots+(a+1)+a \\
& \epsilon \theta\left(n^{2}\right) \\
& 2 S=(a+b)+(a+b)+\ldots+(a+b) \\
& S=\frac{a+b}{2} \text {. \#of terms tor to sum anitnet denis }
\end{aligned}
$$

Runtime example \#3 count sum= Sum +1 executions!

$$
i=1
$$

while $i<n$ do

$\begin{aligned} \text { for } j & =1 \text { to } i \text { do } \\ \text { sum } & =\operatorname{sum}+1\end{aligned}$
i += i

$$
\begin{aligned}
& i=1,2,4,8,16, \ldots \\
& T(n)=1+2+4+8+16+\ldots+2^{k}, \text { where } 2^{k}<n \\
& 2^{k+1} \geq n \\
&=\left(\begin{array}{cc}
2^{k} 2^{k-1} & 2^{\prime} 2^{0} \\
1 & 1 \\
1 & 1
\end{array}\right)^{k} \text { bat binary representation } \\
& T(n)+1=\left(\begin{array}{ccc}
k^{k} 2^{k} 2^{k-1} \cdots & 2^{\prime} & 2^{0} \\
100 & 0 & 0 \\
k+1
\end{array}\right)_{2}=2^{k+1}
\end{aligned}
$$

Hence, $T(n)=2^{k+1}-1 \geq n-1$

$$
T(n)=2.2^{k}-1 \quad 2 n-1
$$

So: $\quad n-1 \leq T(n)<2 n-1 \underset{\text { implies }}{\Rightarrow} T(n) \in \theta(n)$
If you ave curious what the value k is: implies $k=\lceil\lg n 7-1=\lfloor\lg (n-1)\rfloor$

Runtime example \#4

int $\max (\mathrm{A}, \mathrm{n})$
if $(\mathrm{n}==1)$ return $\mathrm{A}[0]$
return larger of $A[n-1]$ and $\max (A, n-1)$
Recursion almost always yields a recurrence relation:

Solving recurrence:

$$
\begin{aligned}
& T(1) \leq b \\
& T(n) \leq c+T(n-1) \quad \text { if } n>1
\end{aligned}
$$

if conntinglines:

$$
\frac{\text { Substitution method: }}{T(n)<c+c+T}
$$

$$
\begin{aligned}
T(n) & \leq c+c+T(n-2) & & \text { (substitution) } \\
& \leq c+c+c+T(n-3) & & \text { (substitution) } \\
& \leq k c+T(n-k) & & (\text { extrapolating } k>0) \\
& =(n-1) c+T(1) & & (\text { for } k=n-1) \text { grus } \\
& \leq(n-1) c+b & &
\end{aligned}
$$

$T(n) \in O(n)$

Claim: $T(n) \leqslant(n-1) c+b$
Proof by induction on: recurrence

- Base case: $n=1 \quad T(1) \leq b=(1-1) c+b$
- Inductive step:

Induction hypothesis (i.h.):
for every $n \leq k$: $T(n) \leq(n-1) c+b$
We need to prove the claim for $n=k+1$.

$$
\begin{aligned}
T(n)=T(k+1) & \leqslant c+T(k) \leqslant c+(k-1) c+b \\
& =k c+b=(n-1) c+b .
\end{aligned}
$$

Runtime example $\# 5$ ：Mergesort nh $\{$ 目 兰了nル
Mergesort algorithm： Split list in half，sort first half，sort second half，merge together Recurrence relation：

Time：$\theta(n)$

$$
\begin{aligned}
& T(1) \leq b \quad \quad \quad \text { time for splitting \& merging } \\
& T(n) \leq 2 T(n / 2)+c n \quad \text { if } n>1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solving recurrence: } \\
& T(n) \leq 2 T(n / 2)^{2}+c n \\
& \leq 2(2 T(n / 4)+c n / 2)+c n \quad \text { (substitution) } \\
& =4 T(n / 4)+2 c n \\
& \leq 4(2 T(n / 8)+c n / 4)+2 c n \quad \text { (substitution) } \\
& =8 T(n / 8)+3 c n \\
& \leq 2^{k} T\left(n / 2^{k}\right)+k c n \quad(\text { extrapolating } k>0) \\
& =n T(1)+c n \lg n \quad\left(\text { for } 2^{k}=n\right) \\
& T(n) \in \underset{O(n \log n)}{\leq n \lg n} \quad n / 2^{k}=1 \Longleftrightarrow k=\lg n
\end{aligned}
$$

Runtime example \#6: Fibonacci $1 / 2$
Recursive Fibonacci:
int fib (n)
if($n=0$ or $n==1$) return return $\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$

Recurrence relation: (lower bound)

$$
\begin{aligned}
& T(0) \geq b \\
& T(1) \geq b
\end{aligned}
$$

$$
T(n) \geq T(n-1)+T(n-2)+c \quad \text { if } n>1 \quad \text { gets worse }
$$

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

where $\varphi=(1+\sqrt{5}) / 2$. .. golden ratio

Note: $\varphi^{2}=\varphi+1$.
$\Leftarrow \varphi=\frac{a}{b}=\frac{a+b}{a}=1+\frac{a}{a}=1+\frac{1}{\varphi}$

Runtime example \#6: Fibonacci $2 / 2$

Claim:

$$
T(n) \geq b \varphi^{n-1}
$$

Proof: (by induction on n)
Base case: $T(0) \geq b>b \varphi^{-1}$ and $T(1) \geq b=b \varphi^{0}$. Inductive hyp: Assume $T(n) \geq b \varphi^{n-1}$ for all $n \leq k$. Inductive step: Show true for $n=k+1$.

$$
\begin{aligned}
& T(n) \stackrel{\downarrow}{\stackrel{\downarrow}{ } \quad \stackrel{c}{2}} \underset{\geq}{\geq} T(n-1)+T(n-2)+c \\
& \geq b \varphi^{n-2}+b \varphi^{n-3}+c \quad \text { (by inductive hyp.) } \\
& =b \varphi^{n-3}(\underline{\varphi+1})+c \\
& =b \varphi^{n-3} \underline{\varphi}^{2}+c \sum \text { golden ratio property } \\
& \geq b \varphi^{n-1} \\
& T(n) \in \Omega\left(\varphi^{n}\right)
\end{aligned}
$$

Why? Same recursive call is made numerous times.

Example \#7: Learning from analysis

To avoid recursive calls

- store base case values in a tableex
- before calculating the value for n
- check if the value for n is in the cablés
- if so, return it

- if not, calculate it and store it in the table

This strategy is called memoization and is closely related to dynamic programming.

How much time does this version take?

$$
\theta(n)
$$

Runtime Example \#8: Longest Common Subsequence
Problem: Given two strings $(A$ and $B)$, find the longest sequence of characters that appears, in order, in both strings.

Example:

$$
|A|=n \quad \cdot 2^{n}
$$

Example:
binary $10100011 \geqslant$ to generate all

$$
|B|=m
$$

represent $A=$
10100
$A=$ Se each (1)
through numbers from to $2^{n}-1$

$$
B=\stackrel{*}{n} \text { in dane (method }
$$

"saute" \leftarrow if we do not ignore
A longest common subsequence is "same" (so is "same") the space
Applications:
"net"

DNA sequencing, revision control systems, diff, ...
Alg. 1:
For every subsequence S of A For every subsequence S^{\prime} of B If $S=S^{\prime}$
"worst-ase"
remember the longest so far

$$
\begin{aligned}
& {[\overbrace{\theta(\min (n, n)))} 2^{m} \times 2^{n} x} \\
& T(n) \in \theta\left(2^{n} \cdot 2^{m} \cdot \min (n, m)\right)
\end{aligned}
$$

Example: subsequerces of "abc"

$$
0 . .2^{3}-1=7
$$

n	$b i n$	subsequence
0	000	$" " c "$
1	801	$" b "$
2	010	$" b c{ }^{\prime}$
3	011	$" a "$
4	100	$" a c$ "
5	101	$" a b "$
6	110	$" a b c$ "
7	111	

Best aly.
using $D P: \theta(n m)$

Alg2.:

$$
\begin{aligned}
& \text { (For evory subsoquence sof } A \times 2^{n} \\
& \begin{array}{l}
\text { if } S \text { is a sabsequence of } B \rightarrow \text { greedy approch: } \\
\text { remembet se longest one }
\end{array} \quad \text { find first occ of } S(0 J i n B \\
& \text { - for } i=1 \text { to longth }(S)-1 \\
& \text { tind first oce of } S[i] \text { in } \\
& \text { Ba fter oce of } S[i-1]
\end{aligned}
$$

Example \#9

$$
\lg (a, b)=\lg a+\operatorname{ly} b
$$

Find a tight bound on $T(n)=\lg (n!)$.

$$
\begin{aligned}
& =\lg (n \cdot(n-1)(n-2) \ldots 2.1) \\
& =\lg (4)+\lg (4-1)+\ldots+\lg (2)+\lg (1) \\
& =\sum_{i=1}^{n} \lg (i) \leqslant \sum_{i=1}^{n} \lg (n)=n \lg n \leqslant o(n \log n) \\
& \geq \sum_{i=n / 2}^{n} \lg (i) \geq \sum_{i=n / 2}^{n} \lg (n / 2) \\
& \begin{array}{ll}
\begin{array}{ll}
n \geq(4) n_{0} & i=n / 2 \\
\lg n \geq 2
\end{array} & i=n / 2 \\
& =n / 2 \cdot \lg (n / 2)
\end{array} \\
& =\frac{1}{2} n \lg n-\frac{-}{2} \geq c n \lg n \quad \frac{n / 2 \cdot(\lg n-1)}{\epsilon \Omega(n \log n)} \\
& \frac{\frac{1}{4} n \lg n}{}+\frac{\frac{1}{4}-\frac{1}{2 \lg n-\frac{n}{2}}}{20} \geqslant\left(\frac{1}{4}\right)^{c} \lg n
\end{aligned}
$$

Log Aside

$\log _{b} x$ is the exponent b must be raised to to equal x.

- $\lg x \equiv \log _{2} x$ (base 2 is common in CS)
- $\log x \equiv \log _{10} x$ (base 10 is common for 10 fingered mammals)
- $\ln x \equiv \log _{e} x$ (the natural \log)

Note: $\Theta(\lg n)=\Theta(\log n)=\Theta(\ln n)$ because

$$
\log _{b} n=\frac{\log _{c} n}{\log _{c} b}
$$

for constants $b, c>1$.

Asymptotic Analysis Summary

- Determine what is the input size
- Express the resources (time, memory, etc.) an algorithm requires as a function of input size
worst case
- best case
- average case
- Use asymptotic notation, O, Ω, Θ, to express the function simply

Problem Complexity

The complexity of a problem is the complexity of the best algorithm for the problem.

- We can sometimes prove a lower bound on a problem's complexity. (To do so, we must show a lower bound on any possible algorithm.)
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).
Linear search takes $O(n)$ time (matching upper bound).
Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).
Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg (n!))$?

Can You Beat $O(n \log n)$ Sort?
Chew these over: $\quad \lambda^{2}$ values

- How many values can you represent with c bits?
- Comparing two values $(x<y)$ gives you one bit of information.
- There ar n! possible ways to reorder a list. We could number them: $1,2, \ldots, n$!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n ! numbers?

$$
\begin{aligned}
& \geq \lg (n!) \text { bits of information } \\
& \in \Omega(n \log n)
\end{aligned}
$$

Problem Complexity

$$
\ell^{P} \in O\left(n^{c}\right)
$$

Sorting: solvable in polynomial time, tractable Traveling Salesman Problem (TSP): In 1,290,319km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/ Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.

Are problems in NP really in P ? $\$ 1,000,000$ prize

Problem Complexity

Searching and Sorting: P, tractable
Traveling Salesman Problem: NP, intractable?
Kolmogorov Complexity: Uncomputable $=$ Undecidable
Example 1:
Kolmogorov Complexity of a string is the length of the shortest description of it.

Can't be computed. Pithy but hand-wavy proof: What's:
The smallest positive integer that cannot be described in fewer than fourteen words $<$ goo ole: \leqslant Berry Paradox

Example 2:
Halting problem: Given a code, decide if it stops.

