Unit #1: Complexity Theory and Asymptotic Analysis CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch

2016W1

Unit Outline

- Brief proof reminder
- Algorithm Analysis: Counting steps
- Asymptotic Notation
- Runtime Examples
- Problem Complexity

Learning Goals

- Given code, write a formula that measures the number of steps executed as a function of the size of the input.
- Use asymptotic notation to simplify functions and to express relations between functions.
- ► Know the asymptotic relations between common functions.
- Understand why to use worst-case, best-case, or average-case complexity measures.
- Give examples of tractable, intractable, and undecidable problems.

Proof by ...

Counterexample

- show an example which does not fit with the theorem
- Thus, the theorem is false.
- Contradiction
 - assume the opposite of the theorem
 - derive a contradiction
 - Thus, the theorem is true.
- Induction
 - prove for a base case (e.g., n = 1)
 - assume for all $n \leq k$ (for arbitrary k)
 - prove for the next value (n = k + 1)
 - Thus, the theorem is true.

Example: Proof by Induction (worked) 1/4

Theorem:

A positive integer x is divisible by 3 if and only if the sum of its decimal digits is divisible by 3.

Proof:

Let $x_1x_2x_3...x_n$ be the decimal digits of x. Let the sum of its decimal digits be

$$S(x) = \sum_{i=1}^n x_i$$

We'll prove the stronger result:

$$S(x) \bmod 3 = x \bmod 3.$$

How do we use induction?

Example: Proof by Induction (worked) 2/4

Base Case:

Consider any number x with one (n = 1) digit (0-9).

$$S(x) = \sum_{i=1}^n x_i = x_1 = x.$$

So, it's trivially true that $S(x) \mod 3 = x \mod 3$ when n = 1.

Example: Proof by Induction (worked) 3/4

Inductive hypothesis:

Assume for an arbitrary integer k > 0 that for any number x with $n \le k$ digits:

 $S(x) \mod 3 = x \mod 3.$

Inductive step:

Consider a number x with n = k + 1 digits:

 $x = x_1 x_2 \dots x_k x_{k+1}.$

Let z be the number $x_1x_2...x_k$. It's a k-digit number so the inductive hypothesis applies:

 $S(z) \mod 3 = z \mod 3.$

Example: Proof by Induction (worked) 4/4 Inductive step (continued):

$$x \mod 3 = (10z + x_{k+1}) \mod 3 \qquad (x = 10z + x_{k+1})$$

= $(9z + z + x_{k+1}) \mod 3$
= $(z + x_{k+1}) \mod 3 \qquad (9z \text{ is divisible by } 3)$
= $(S(z) + x_{k+1}) \mod 3 \qquad (induction hypothesis)$
= $(x_1 + x_2 + \dots + x_k + x_{k+1}) \mod 3$
= $S(x) \mod 3$

QED (quod erat demonstrandum: "what was to be demonstrated")

A Task to Solve and Analyze

Find a student's name in a class given her student ID

Analysis of Algorithms

Analysis of an algorithm gives insight into

- how long the program runs (time complexity or runtime) and
- how much memory it uses (space complexity).
- Analysis can provide insight into alternative algorithms
- Input size is indicated by a non-negative integer n (sometimes there are multiple measures of an input's size)
- Running time is a real-valued function of n such as:

$$\blacktriangleright T(n) = 4n + 5$$

•
$$T(n) = 0.5n \log n - 2n + 7$$

•
$$T(n) = 2^n + n^3 + 3n$$

Suppose a computer executes 1op per picosecond (trillionth):

n =	10
log n	1ps
п	10ps
n log n	10ps
n ²	100ps
2 ⁿ	1ns

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	
log n	1ps	2ps	
n	10ps	100ps	
n log n	10ps	200ps	
n ²	100ps	10ns	
2 ⁿ	1ns	1Es	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000
log n	1ps	2ps	3ps
n	10ps	100ps	1ns
n log n	10ps	200ps	3ns
n ²	100ps	10ns	$1 \mu { m s}$
2 ⁿ	1ns	1Es	10 ²⁸⁹ s

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000
log n	1ps	2ps	3ps	4ps
n	10ps	100ps	1ns	10ns
n log n	10ps	200ps	3ns	40ns
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$
2 ⁿ	1ns	1Es	10 ²⁸⁹ s	

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10 ⁵	
log n	1ps	2ps	3ps	4ps	5ps	
n	10ps	100ps	1ns	10ns	100ns	
n log n	10ps	200ps	3ns	40ns	500ns	
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	
2 ⁿ	1ns	1Es	10^{289} s			

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10 ⁵	10 ⁶	
log n	1ps	2ps	3ps	4ps	5ps	брs	
n	10ps	100ps	1ns	10ns	100ns	1μ s	
n log n	10ps	200ps	3ns	40ns	500ns	6 μ s	
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	
2 ⁿ	1ns	1Es	10 ²⁸⁹ s				

Suppose a computer executes 1op per picosecond (trillionth):

n =	10	100	1,000	10,000	10 ⁵	10 ⁶	10 ⁹
log n	1ps	2ps	3ps	4ps	5ps	брs	9ps
п	10ps	100ps	1ns	10ns	100ns	$1 \mu { m s}$	1ms
n log n	10ps	200ps	3ns	40ns	500ns	б μ s	9ms
n ²	100ps	10ns	$1 \mu { m s}$	$100 \mu s$	10ms	1s	1week
2 ⁿ	1ns	1Es	10 ²⁸⁹ s				

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

1) What's the input size, n?

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

2) Should we assume a worst-case, best-case, or average-case input of size *n*?

```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

3) How many lines are executed as a function of n in a worst-case? T(n) =

Are lines the right unit?

The number of lines executed in the worst-case is:

$$T(n)=2n+1.$$

- Does the "1" matter?
- Does the "2" matter?

Big-O Notation

Assume that for every integer n, $T(n) \ge 0$ and $f(n) \ge 0$.

 $T(n) \in O(f(n))$ if there are positive constants c and n_0 such that

 $T(n) \leq cf(n)$ for all $n \geq n_0$.

Meaning: "T(n) grows no faster than f(n)"

Asymptotic Notation

- T(n) ∈ O(f(n)) if there are positive constants c and n₀ such that T(n) ≤ cf(n) for all n ≥ n₀.
- ► $T(n) \in \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \ge cf(n)$ for all $n \ge n_0$.
- ► $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.
- T(n) ∈ o(f(n)) if for any positive constant c, there exists n₀ such that T(n) < cf(n) for all n ≥ n₀.
- T(n) ∈ ω(f(n)) if for any positive constant c, there exists n₀ such that T(n) > cf(n) for all n ≥ n₀.

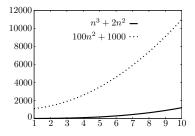
Examples

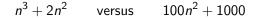
$$10,000n^{2} + 25n \in \Theta(n^{2})$$
$$10^{-10}n^{2} \in \Theta(n^{2})$$
$$n \log n \in O(n^{2})$$
$$n \log n \in \Omega(n)$$
$$n^{3} + 4 \in o(n^{4})$$
$$n^{3} + 4 \in \omega(n^{2})$$

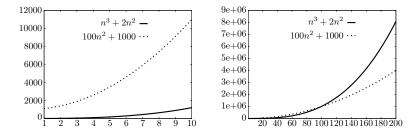
```
// Linear search
find(key, array)
for i = 0 to length(array) - 1 do
    if array[i] == key
        return i
    return -1
```

4) How does T(n) = 2n + 1 behave asymptotically? What is the appropriate order notation? (*O*, *o*, Θ , Ω , ω ?)

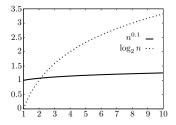
$$n^3 + 2n^2$$
 versus $100n^2 + 1000$



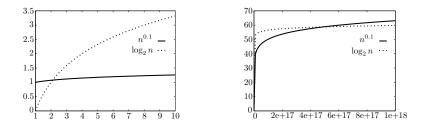


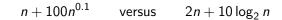


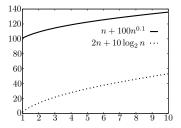
 $n^{0.1}$ versus $\log_2 n$

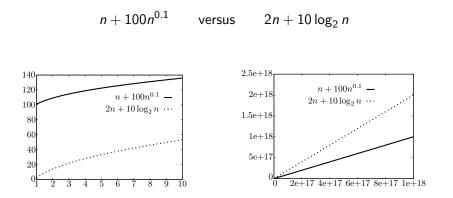


 $n^{0.1}$ versus $\log_2 n$









Typical asymptotics

Tractable

- ► constant: Θ(1)
- ► logarithmic: $\Theta(\log n)$ $(\log_b n, \log n^2 \in \Theta(\log n))$
- ► poly-log: $\Theta(\log^k n)$ $(\log^k n \equiv (\log n)^k)$
- linear: $\Theta(n)$
- ► log-linear: Θ(n log n)
- superlinear: $\Theta(n^{1+c})$ (c is a constant > 0)
- quadratic: $\Theta(n^2)$
- cubic: $\Theta(n^3)$
- polynomial: $\Theta(n^k)$ (k is a constant)

Intractable

• exponential: $\Theta(c^n)$ (c is a constant > 1)

Sample asymptotic relations

- ▶ $\{1, \log n, n^{0.9}, n, 100n\} \subset O(n)$
- $\{n, n \log n, n^2, 2^n\} \subset \Omega(n)$
- $\{n, 100n, n + \log n\} \subset \Theta(n)$
- $\blacktriangleright \{1, \log n, n^{0.9}\} \subset o(n)$
- $\{n \log n, n^2, 2^n\} \subset \omega(n)$

- single operations: constant time
- consecutive operations: sum operation times
- conditionals: condition time plus max of branch times
- loops: sum of loop-body times
- function call: time for function

Above all, use your head!

Runtime example #1

```
for i = 1 to n do
for j = 1 to n do
sum = sum + 1
```

Runtime example #2

```
i = 1
while i < n do
  for j = i to n do
    sum = sum + 1
    i++</pre>
```

Runtime example #3

```
i = 1
while i < n do
  for j = 1 to i do
    sum = sum + 1
    i += i</pre>
```

Runtime example #4

Recursion almost always yields a recurrence relation:

$$T(1) \le b$$

 $T(n) \le c + T(n-1)$ if $n > 1$

Solving recurrence:

$$T(n) \le c + c + T(n-2)$$
 (substitution)
 $\le c + c + c + T(n-3)$ (substitution)
 $\le kc + T(n-k)$ (extrapolating $k > 0$)
 $= (n-1)c + T(1)$ (for $k = n-1$)
 $\le (n-1)c + b$

 $T(n) \in$

Runtime example #5: Mergesort

Mergesort algorithm:

Split list in half, sort first half, sort second half, merge together Recurrence relation:

$$T(1) \le b$$

 $T(n) \le 2T(n/2) + cn$ if $n > 1$

Solving recurrence:

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2(2T(n/4) + cn/2) + cn \quad \text{(substitution)}$$

$$= 4T(n/4) + 2cn$$

$$\leq 4(2T(n/8) + cn/4) + 2cn \quad \text{(substitution)}$$

$$= 8T(n/8) + 3cn$$

$$\leq 2^{k}T(n/2^{k}) + kcn \quad \text{(extrapolating } k > 0)$$

$$= nT(1) + cn \lg n \quad \text{(for } 2^{k} = n)$$

$$T(n) \in$$

Runtime example #6: Fibonacci 1/2

Recursive Fibonacci:

```
int fib(n)
    if( n == 0 or n == 1 ) return n
    return fib(n-1) + fib(n-2)
```

Recurrence relation: (lower bound)

$$T(0) \ge b$$

$$T(1) \ge b$$

$$T(n) \ge T(n-1) + T(n-2) + c \quad \text{if } n > 1$$

Claim:

$$T(n) \ge b\varphi^{n-1}$$

where $\varphi = (1 + \sqrt{5})/2$. Note: $\varphi^2 = \varphi + 1$.

Runtime example #6: Fibonacci 2/2

Claim:

$$T(n) \ge b\varphi^{n-1}$$

Proof: (by induction on *n*) Base case: $T(0) \ge b > b\varphi^{-1}$ and $T(1) \ge b = b\varphi^{0}$. Inductive hyp: Assume $T(n) \ge b\varphi^{n-1}$ for all $n \le k$. Inductive step: Show true for n = k + 1.

$$T(n) \ge T(n-1) + T(n-2) + c$$

$$\ge b\varphi^{n-2} + b\varphi^{n-3} + c \qquad \text{(by inductive hyp.)}$$

$$= b\varphi^{n-3}(\varphi + 1) + c$$

$$= b\varphi^{n-3}\varphi^{2} + c$$

$$\ge b\varphi^{n-1}$$

 $T(n) \in$ Why? Same recursive call is made numerous times. Example #7: Learning from analysis

To avoid recursive calls

- store base case values in a table
- before calculating the value for n
 - check if the value for n is in the table
 - if so, return it
 - if not, calculate it and store it in the table

This strategy is called <u>memoization</u> and is closely related to <u>dynamic programming</u>.

How much time does this version take?

Runtime Example #8: Longest Common Subsequence

Problem: Given two strings (A and B), find the longest sequence of characters that appears, in order, in both strings.

Example:

 $A = ext{search me}$ $B = ext{insane method}$

A longest common subsequence is "same" (so is "seme")

Applications:

DNA sequencing, revision control systems, diff, ...

Example #9

Find a tight bound on $T(n) = \lg(n!)$.

Log Aside

 $\log_b x$ is the exponent b must be raised to to equal x.

•
$$\lg x \equiv \log_2 x$$
 (base 2 is common in CS)

- ▶ $\log x \equiv \log_{10} x$ (base 10 is common for 10 fingered mammals)
- ▶ $\ln x \equiv \log_e x$ (the natural log)

Note: $\Theta(\lg n) = \Theta(\log n) = \Theta(\ln n)$ because

$$\log_b n = \frac{\log_c n}{\log_c b}$$

for constants b, c > 1.

Asymptotic Analysis Summary

- Determine what is the input size
- Express the resources (time, memory, etc.) an algorithm requires as a function of input size
 - worst case
 - best case
 - average case
- ► Use asymptotic notation, O, Ω, Θ, to express the function simply

Problem Complexity

The **complexity of a problem** is the complexity of the best algorithm for the problem.

- We can sometimes prove a lower bound on a problem's complexity. (To do so, we must show a lower bound on any possible algorithm.)
- A correct algorithm establishes an upper bound on the problem's complexity.

Searching an unsorted list using comparisons takes $\Omega(n)$ time (lower bound).

Linear search takes O(n) time (matching upper bound).

Sorting a list using comparisons takes $\Omega(n \log n)$ time (lower bound).

Mergesort takes $O(n \log n)$ time (matching upper bound).

Aside: Who Cares About $\Omega(\lg(n!))$?

Can You Beat $O(n \log n)$ Sort?

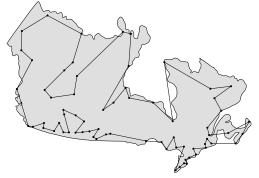
Chew these over:

- How many values can you represent with c bits?
- Comparing two values (x < y) gives you one bit of information.
- ► There are n! possible ways to reorder a list. We could number them: 1, 2, ..., n!
- Sorting basically means choosing which of those reorderings/numbers you'll apply to your input.
- How many comparisons does it take to pick among n! numbers?

Problem Complexity

Sorting: solvable in polynomial time, tractable Traveling Salesman Problem (TSP): In 1,290,319km, can I drive to all the cities in Canada and return home? www.math.uwaterloo.ca/tsp/

Checking a solution takes polynomial time. Current fastest way to find a solution takes exponential time in the worst case.



Are problems in NP really in P? \$1,000,000 prize

Problem Complexity

Searching and Sorting: P, tractable Traveling Salesman Problem: NP, intractable? Kolmogorov Complexity: Uncomputable

Kolmogorov Complexity of a string is the length of the shortest description of it.

Can't be computed. Pithy but hand-wavy proof: What's:

The smallest positive integer that cannot be described in fewer than fourteen words