Unit #0: Introduction

CPSC 221: Algorithms and Data Structures

Will Evans and Jan Manuch¹

2016W1

¹Thanks to Steve Wolfman for the content of most of these slides with additional material from Alan Hu, Ed Knorr, and Kim Voll.

Unit Outline

- Course logistics
- Course overview
- ► Fibonacci Fun
- Arrays
- Queues
- Stacks
- Deques

Course Information

Instructors

Will Evans Jan Manuch

will@cs.ubc.ca jmanuch@cs.ubc.ca ICCS X841 ICCS 24

TAs

Alexander Lim Henry Chee Michael Zhang Oliver Zhan

Tyle 10-11
Wed 2-39
Chris Hunter David Zheng Harman Gakhal Jason Zeng Jin Ziyang Mike Spearman Muzhi Ou Patience Shyu Sharon Yang Zheng Dong

Jordan Coblin Nancy Chen Xing Zeng

Office hours

See www.ugrad.cs.ubc.ca/~cs221

Texts

Epp Discrete Math, Koffman Data Structs C++

Course Work

No late work; may be flexible with advance notice

```
10% Labs
15% Programming projects (\sim 3)
15% Written homework (\sim 3)
20% Midterm exam
40% Final exam
```

Must pass the final and combo of labs/assignments to pass the course.

Collaboration

You may work in groups of two people on:

- Written homework

You may also collaborate with others as long as you follow the rules (see the website) and acknowledge their help on your assignment.

Don't violate the collaboration policy.

Course Mechanics

- ► Web page: www.ugrad.cs.ubc.ca/~cs221
- ► Piazza: https://piazza.com/ubc.ca/winterterm12016/cpsc221/home
- ▶ UBC Connect site: www.connect.ubc.ca
- ► Labs are in ICCS X350
 - ▶ Use the Xshell program on the lab machines to ssh into a undergrad Unix machine (e.g. lulu.ugrad.cs.ubc.ca)
- Programming projects will be graded on UNIX/g++

What is a Data Structure?

Examples: A definition: Array A method of storing bate provides, throng a sit of operations, a way to manipulate and access Tree Stack Quene Heavs Graph List

Observation

- All programs manipulate data
 - programs process, store, display, gather data
 - data can be information, numbers, images, sound
- The programmer must decide how to store and manipulate data
- ► This choice influences the program in many ways
 - execution speed
 - memory requirements
 - maintenance (debugging, extending, etc.)

Goals of the Course

- Become familiar with some of the fundamental data structures and algorithms in computer science
 - Learn when to use them
- Improve your ability to solve problems abstractly
 - Data structures and algorithms are the building blocks
- Improve your ability to analyze algorithms
 - Prove correctness
 - Gauge, compare, and improve time and space complexity
- Become modestly skilled with C++ and UNIX, but this is largely on your own!

Analysis Example: Fibonacci numbers

emales = 1 (Q) (Z)

exponential asouth

Bee ancestory:

- 1. Fertilized egg becomes a female bee with two parents
- 2. Unfertilized egg becomes a male bee with one parent

How many great-grandparents does a male bee have? great-great-grandparents? ... $F_{ib} = F_{ib} = F_{ib}$

Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

First two numbers are 1; each succeeding number is the sum of the previous two numbers.

Recursive Fibonacci

Problem: Calculate the *n*th Fibonacci number.

Recursive definition:

$$fib_n = egin{cases} 1 & \text{if } n=1 \ 1 & \text{if } n=2 \ fib_{n-1} + fib_{n-2} & \text{if } n\geq 3 \end{cases}$$

```
C++ code:

(n = \text{fib()} \text{ is called})

int fib(int n) {

if (n <= 2) return 1;

else return fib(n-1) + fib(n-2);
}

(n = \text{fib()} \text{ is called})

(n = \text{fib()} \text{ is called})
```

Iterative Fibonacci

```
Idea: Use an array
int fib(int n) {
  int F[n+1];
  F[0]=0; F[1]=1; F[2]=1;
  for( int i=3; i<=n; ++i ) {
                                    n-2 additions
                 a = b 2 shift values
(We don't really need the array.) I see a book
Can we do better?
```

Fibonacci by formula

Idea: Use a formula (a *closed form solution* to the recursive definition.)

$$fib_n = \frac{\varphi^n - (-\varphi)^{-n}}{\sqrt{5}}$$
 where $\varphi = (1+\sqrt{5})/2 \approx 1.61803$.
$$\varphi^n = (1+\sqrt{5})/2 \approx 1.61803$$

$$\varphi^n$$

Fibonacci with Matrix Multiplication

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \stackrel{\text{fib}_2}{=} \begin{bmatrix} 1 + 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \text{fib}_3 \\ \text{fib}_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \stackrel{\text{fib}_4}{=} \begin{bmatrix} \text{fib}_4 \\ \text{fib}_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \stackrel{\text{fib}_1}{=} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \stackrel{\text{fib}_1}{=} \begin{bmatrix} \text{fib}_n \\ \text{fib}_{n-1} \end{bmatrix}$$

How do we calculate
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-2}$$
? = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $a+b=fib$

Repeated Squaring

Composison (# of asistem. operations):

$$\begin{pmatrix}
1 & 3 & 2 & 2 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 1$$

Example: $A^{100} = A^{64} \times A^{32} \times A^4$. 8 instead of 99 multiplications.

Generally, about $log_2 n$ multiplications.

< 200g, n matrix meltiplications

Is this better than iterative Fibonacci?

~ 24 log n int. sparations

Abstract Data Type

Abstract Data Type

Mathematical description of an object and the set of operations on the object

Example: **Dictionary ADT**

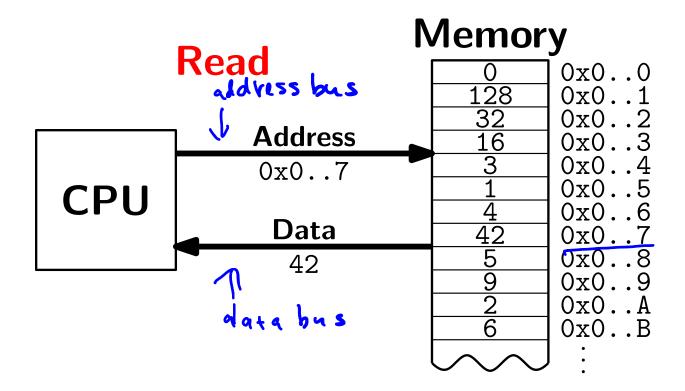
- Stores pairs of strings: (word, definition)
- Operations:
 - Insert(word, definition)
 - Delete(word)
 - Find(word)

Another Example: Array ADT

- Store things like integers, (pointers to) strings, etc.
- Operations:
 - Initialize an empty array that can hold n things. thing A[n];
 - ► Access (read or write) the ith thing in the array
 (0 ≤ i ≤ n − 1).
 thing1 = A[i]; Read
 A[i] = thing2; Write

Computer memory is an array.

Read: CPU provides address *i*, memory unit returns the data stored at *i*.



Computer memory is an array.

Write: CPU provides address i and data d, memory unit stores data d at i.

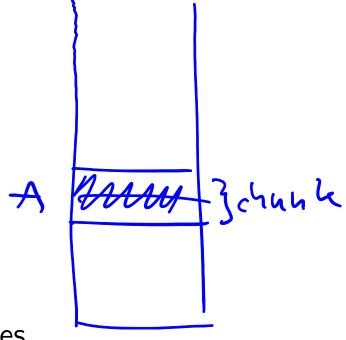
hexalecimed #s **Memory** Write 0x0..0128 0x0..1 32 0x0..2 **Address** 0x0..30x0..40x0..7 0x0..5**CPU** 0x0..6Data 0x0...70x0..80x0..90x0..A0x0..B

Computer memory is an array. Every bit has a physical location.



http://zeptobars.ru/en/read/how-to-open-microchip-asic-what-inside licensed under Creative Commons Attribution 3.0 Unported.

- Computer memory is an array.
- Simple and fast.
- Used in almost every program.
- Used to implement other data structures.



Array limitations

Need to know size when array is created.

Fix: Resizeable arrays.

If the array fills up, allocate a new, bigger array and copy the old contents to the new array.

(2.56B) array A. 16B

► Indices are integers 0,1,2,...

Fix: Hashing. (more later)

How would you implement the Array AD · me mory menagement - list of free chunks of mending (free lise) A .. address of the beginning of this churk A = 0x0007 A+3= 0x 000A A + 3x size (object) address of the "3-11" object $\times (A+3) \approx A[3]$ pointer arithmetic

How would you implement the Array ADT?

```
not juitielized

not juitielized

might

hindize to

pros...all zeros
Arrays in C++
     Create(int A[100];)
     Access for( int i=0; i<100; i++ )
```

How would you implement the Array ADT?

Data Structures as Algorithms

Algorithm

a high level, language independent description of a step-by-step process for solving a problem

Data Structure

a way of storing and organizing data so that it can be manipulated as described by an ADT

A data structure is defined by the algorithms that implement the ADT operations.

ADT decribes what
it stores
defines interface
(set of opporations)

implemented by

1) 3: specifies how the

dota is stored

provides: algorithms

for each operation

24/42

Why so many data structures?

Ideal data structure

fast, elegant, memory efficient

Trade-offs

- time vs. space
- performance vs. elegance
- generality vs. simplicity
- one operation's performance vs. another's

Data structures for Dictionary ADT

- List
- Skip list
- Binary search tree
- ► AVL tree
- Splay tree
- ► B-tree
- Red-Black tree
- Hash table

Code Implementation

Theory

- abstract base class (interface) describes ADT
- descendents implement data structures for the ADT
- data structures can change without affecting client code

Practice

- different implementations sometimes suggest different interfaces (generality vs. simplicity)
- performance of a data structure may influence the form of the client code (time vs. space, one operation vs. another)

ADT Presentation Algorithm

- 1. Present an ADT
- 2. Motivate with some applications
- 3. Repeat
 - 3.1 develop a data structure for the ADT
 - 3.2 analyze its properties
 - efficiency
 - correctness
 - limitations
 - ease of programming
- 4. Contrast data structure's strengths and weaknesses
 - understand when to use each one

Queue ADT

Queue operations

- create
- destroy
- enqueue
- dequeue
- is_empty

Queue property

If x is enqueued before y is enqueued, then x will be dequeued before y is dequeued.

FIFO: First In First Out

Applications of the Q

- Hold jobs for a printer
- Store packets on network routers
- Hold memory "freelists"
- Make waitlists fair
- Breadth first search

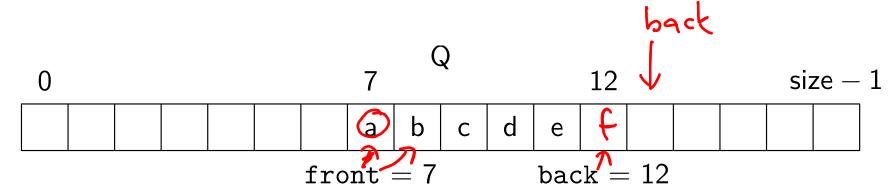
Abstract Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

In order, what letters are dequeued?

- a. OATE
- (b.)ROTA
 - c. OTAE
 - d. None of these, but it **can** be determined from just the ADT.
 - e. None of these, and it **cannot** be determined from just the ADT.

Circular Array Q Data Structure



```
void enqueue(Object x) {
   Q[back] = x;   if (i> full())
   back = (back + 1) % size;
}

bool is_empty() {
   return (front == back);
}

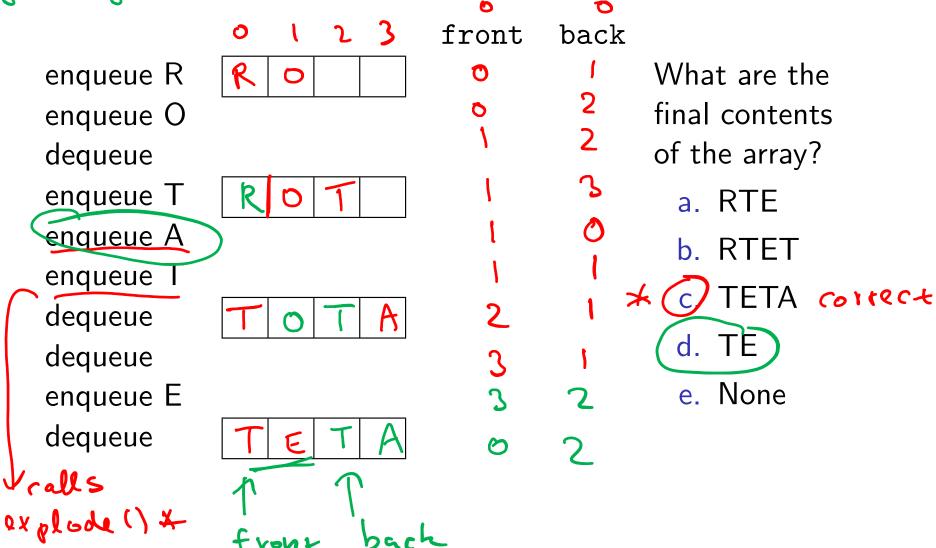
bool is_full() {
   return (front == back);
}

compty() {
   return (front == back);
}

compty() {
   return (front == (back + 1) % size);
}
```

Circular Array Q Example

red.. els ments of the Q given.. leftoner elements



Linked List Q Data Structure

```
Struct Node ?
Object deta;
 Node *hexti
             front
 Node xfront, x back = NYLL
                                # dfine NDEBUG
       = WULZ
  void enqueue(Object x) {
                                                   ret=b
                               Object dequeue()
    if (is_empty()) {
                                 assert(!is_empty());
   Object ret = front->data;
                                 Node *temp = front;
                                 front = front->next; G
    back->next = new Node(x);
      back = back->next;
                                 delete temp;
                           alkryatives: Pet
                            A) front = troy
                               DIY memory management
  bool is_empty() {
    return (front == NULL);
```

Circular Array vs. Linked List

```
Ease of implementation Same

Generality (A. Simited # of elements

at. (A could use dynamic arrays

Speed Same, but Subtle differences: he wildelete takes time

Cache performance

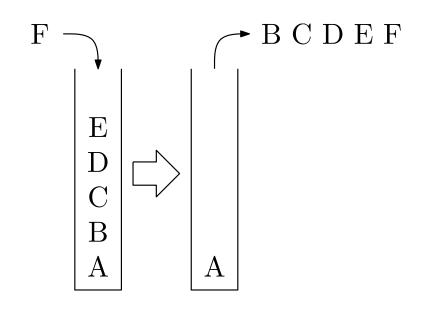
Cache performance

LL uses more memory (to store pointers)
```

Stack ADT

Stack operations

- create
- destroy
- push
- pop
- ► top
- is_empty



Stack property

if x is pushed before y is pushed, then x will be popped after y is popped.

LIFO: Last In First Out

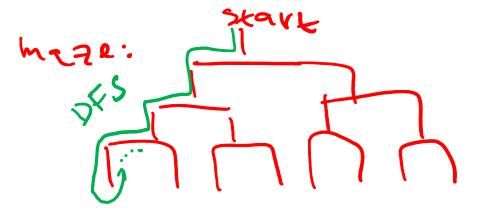
Stacks in Practice

- Function call stack
- Removing recursion

- Balancing symbols (parentheses)

 Revelopment of the second symbols (parentheses)

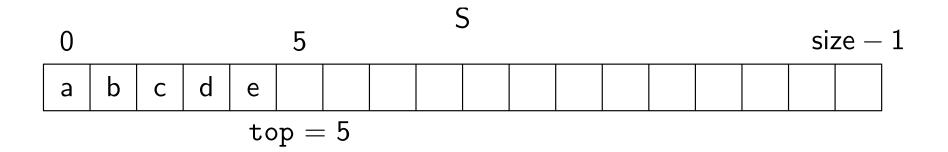
 Evaluating Reverse Polish Notation
- Depth first search



I in arithmetic expression: 9+px(c+d)

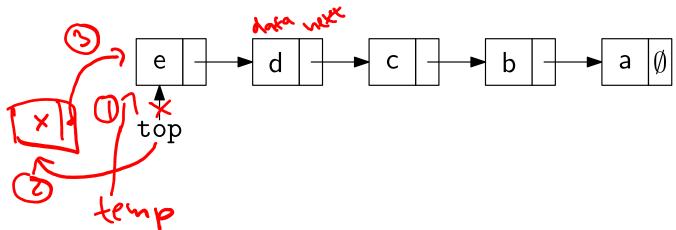
used by: PS (Pesfscript)... Java VM

Array Stack Data Structure



```
void push(Object x) {
                                Object pop() {
  assert(!is_full());
                                  assert(!is_empty());
  S[top] = x;
                                  top--;
                                  return S[top];
  top++;
}
                                bool is_empty() {
                                  return( top == 0 );
Object top() {
  assert(!is_empty());
  return S[top-1];
                                bool is_full() {
}
                                  return( top == size);
                                }
```

Linked List Stack Data Structure



```
void push(Object x) {
                                 Object pop() {
Node *temp = top;
                                   assert(!is_empty());
\bigcirc top = new Node(x);
                                   Object ret = top->data;
  top->next = temp;
                                   Node *temp = top;
                                   top = top->next;
                                   delete temp;
Object top() {
                                   return ret;
  assert(!is_empty());
  return top->data;
}
                                 bool is_empty() {
                                   return( top == NULL );
                                 }
```

Deque ADT

f.deck:]

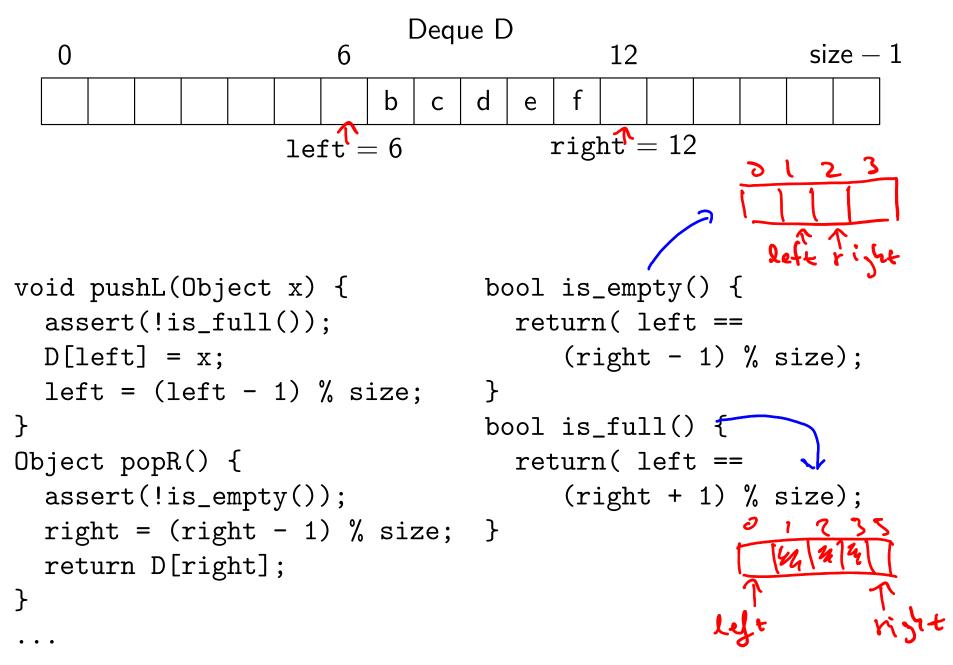
Deque (Double-ended queue) operations

- create/destroy
- pushL/pushR
- popL/popR
- is_empty

Deque property

Deque maintains a list of items. push/pop adds to/removes from front(L)/back(R) of list.

Circular Array Deque Data Structure



Linked List Deque Data Structure Node & prev; (left) hade & next; void pushL(Object x) { Object Object popR() { if(is_empty()) assert(!is_empty()); left = right = new Node(x); Object ret = right->data; Node *temp = right; else { left->prev = new Node(x); (4) right = right->prev; 2 left->prev->next = left; if(right) right->next = NULL; else left = NULL; left = left->prev; **(S)** delete temp; return ret; test if right + NULL bool is_empty() {return left==NULL;}

Data structures you should already know (a bit)

- Arrays
- Linked lists
- Trees
- Queues
- Stacks