The following examples show how easy it can be to write an incorrect proof
that Kruskal’s algorithm produces a minimum spanning tree.

First Wrong Proof

This proof came from earlier CS221 class notes:
1. We already know Kruskal’s alg. finds a spanning tree T
2. Assume another spanning tree, 77, has lower cost than T.
3. Pick an edge e; = (u,v) in Ty that’s not in T.

4. Kruskal’s alg. connects v and v at some point during its execution using
a different edge e.

5. But e must have at most the same cost as e; (or Kruskal’s would have
used e; to connect u and v)

6. So, replace e; in Ty with e (at worst keeping the cost the same)

7. Repeat until T} is the same as T: contradiction!

Consider the following graph:

Kruskal’s algorithm produced a minimum spanning tree 7" for this graph as
follows:

©® @ @ @——@
= |1 =1 1 1
@ @® Q@) @ @®

4

A different spanning tree 77 is:
@—2-@
1
@@

According to the proof, the edge e; = (u,v) in T} can be replaced by e =
(w, z) but e is already in T;. Oops.



Second Wrong Proof
This proof comes from our textbook, Epp p.706 (4th Edition):
1. We already know Kruskal’s finds a spanning tree T" of G.

2. Let Ty be a minimum spanning tree (MST) of G that has the most edges
in common with 7" and assume 77 # T.

3. There is an edge e in T that is not in 77.

4. Adding edge e to T7 produces a cycle. Let e; be an edge of this cycle that
is not in T

5. The weight of e is at most the weight of e; because at the time that
Kruskal’s added e, e; was also available to be added “[since it was not
already in T, and at that stage its addition could not produce a circuit
since e was not in T[”

6. Replace e; in 17 with e to get a MST that is closer to T'. contradiction!

Consider the following graph G:

Kruskal’s algorithm produced the following MST T for G:

O——-@—2-®
1 1 2| e
w O @
A different spanning tree T7 is:
©—1-@—2-@®
1
O—1-©—2-@
€1

According to the proof, the weight of edge e = (y,2) in T is at most the
weight of e; = (u,v), but that is not true. Oops.



Correct Proof

From Wikipedia:

Let G be a connected, edge-weighted graph and K be the subgraph of G
produced by Kruskal’s algorithm. K contains no cycle (by design) and K is
connected since the first (lowest weight) edge that joins two components of K
would have been added by Kruskal’s. Thus K is a spanning tree of G.

Loop invariant: At every iteration, the set, F', of edges chosen by Kruskal’s
so far is a subset of the edges of some minimum spanning tree of G.

This is true at the start of Kruskal’s when F' = (). Let’s assume that it’s true
up to iteration ¢ — 1 and we’ll show that it’s true at iteration i. Let F' be the set
of edges at iteration ¢ — 1 and 7" be a minimum spanning tree that contains F'.
If the ith iteration adds no edge to F' or adds an edge already in 7" to F' then
there’s nothing to prove. So suppose e € T is added to F'. Since T is a spanning
tree, T' 4 e contains a unique cycle C. Let f be an edge in C' but not in F.
(Since F' contains no cycle, f must exist.) Since T is a minimum spanning tree
and T — f + e is a spanning tree, w(e) > w(f). Since FF + f C T, F + f does
not contain a cycle so Kruskal’s must not have considered f yet, implying that
w(e) < w(f). Thus, T — f + e is a minimum spanning tree containing F' + e.

In particular, the invariant holds when F' becomes a spanning tree, which
eventually happens (see above).



