
The following examples show how easy it can be to write an incorrect proof
that Kruskal’s algorithm produces a minimum spanning tree.

First Wrong Proof

This proof came from earlier CS221 class notes:

1. We already know Kruskal’s alg. finds a spanning tree T .

2. Assume another spanning tree, T1, has lower cost than T .

3. Pick an edge e1 = (u, v) in T1 that’s not in T .

4. Kruskal’s alg. connects u and v at some point during its execution using
a different edge e.

5. But e must have at most the same cost as e1 (or Kruskal’s would have
used e1 to connect u and v)

6. So, replace e1 in T1 with e (at worst keeping the cost the same)

7. Repeat until T1 is the same as T : contradiction!

Consider the following graph:

u v

w x

1

2

1

3

Kruskal’s algorithm produced a minimum spanning tree T for this graph as
follows:

u v

w x

u v

w x

1

u v

w x

1 1

u v

w x

1

2

1

A different spanning tree T1 is:

u v

w x

1

2

3

According to the proof, the edge e1 = (u, v) in T1 can be replaced by e =
(w, x) but e is already in T1. Oops.

1



Second Wrong Proof

This proof comes from our textbook, Epp p.706 (4th Edition):

1. We already know Kruskal’s finds a spanning tree T of G.

2. Let T1 be a minimum spanning tree (MST) of G that has the most edges
in common with T and assume T1 6= T .

3. There is an edge e in T that is not in T1.

4. Adding edge e to T1 produces a cycle. Let e1 be an edge of this cycle that
is not in T .

5. The weight of e is at most the weight of e1 because at the time that
Kruskal’s added e, e1 was also available to be added “[since it was not
already in T , and at that stage its addition could not produce a circuit
since e was not in T ]”

6. Replace e1 in T1 with e to get a MST that is closer to T . contradiction!

Consider the following graph G:

u v

w x

1

1

1

y

z

1

2

2
2

Kruskal’s algorithm produced the following MST T for G:

u v

w x

1

1 y

z

1

2

2 e

A different spanning tree T1 is:

u v

w x

1

1

1

y

z

2

2
e1

According to the proof, the weight of edge e = (y, z) in T is at most the
weight of e1 = (u, v), but that is not true. Oops.

2



Correct Proof

From Wikipedia:
Let G be a connected, edge-weighted graph and K be the subgraph of G

produced by Kruskal’s algorithm. K contains no cycle (by design) and K is
connected since the first (lowest weight) edge that joins two components of K
would have been added by Kruskal’s. Thus K is a spanning tree of G.

Loop invariant: At every iteration, the set, F , of edges chosen by Kruskal’s
so far is a subset of the edges of some minimum spanning tree of G.

This is true at the start of Kruskal’s when F = ∅. Let’s assume that it’s true
up to iteration i−1 and we’ll show that it’s true at iteration i. Let F be the set
of edges at iteration i− 1 and T be a minimum spanning tree that contains F .
If the ith iteration adds no edge to F or adds an edge already in T to F then
there’s nothing to prove. So suppose e 6∈ T is added to F . Since T is a spanning
tree, T + e contains a unique cycle C. Let f be an edge in C but not in F .
(Since F contains no cycle, f must exist.) Since T is a minimum spanning tree
and T − f + e is a spanning tree, w(e) ≥ w(f). Since F + f ⊆ T , F + f does
not contain a cycle so Kruskal’s must not have considered f yet, implying that
w(e) ≤ w(f). Thus, T − f + e is a minimum spanning tree containing F + e.

In particular, the invariant holds when F becomes a spanning tree, which
eventually happens (see above).

3


