Stack Queue Deque

- Fibonacci Fun
 - repeated squaring
- ADT vs Data Structures
- Queues
- Stacks
- Deques
 - implementations with arrays, circular arrays, linked lists
- Linked lists Doubly-linked lists Skip lists
 - working with pointers

Complexity Analysis

- Time and Space complexity
- Algorithm Analysis: Counting steps
- Asymptotic Notation

Ο Ω Θ

If $f(n) \in O(g(n))$ then $2^{f(n)} \in O(2^{g(n)})$. True/False?

► Runtime Examples lg(n!) ∈ Θ(?)

Problem Complexity What is the time complexity of sorting by comparisons?

Priority Queues

- Rooted Trees, Briefly
- Priority Queue ADT
- Heaps
 - nearly complete binary tree
 - nifty representation as an array

- Implementing Priority Queue ADT
 - SwapDown
 - SwapUp
 - Heapify
- Analysis of Heapify
- Brief introduction to d-Heaps

Induction

- Thinking Recursively
- Recursion Examples
- Analyzing Recursion: Induction and Recurrences
 - Use induction to prove correctness of recursive algorithm
 - Forming recurrences expressing running time
 - Solving recurrences (substitution method) and induction
 - Analysis of running time using a recursion tree
- Analyzing Iteration: Loop Invariants
 - Proof by induction on the number of iterations!
- How Computers Handle Recursion
 - Recursion and the Call Stack
 - Iteration and Explicit Stacks
 - Tail Recursion
 - Removing tail recursion

Sorting

Comparing Sorting Algorithms

- worst-, best-, average- case running times
- stable sort
- in-place
- Insertion Sort
- Heapsort
- Mergesort
- Quicksort

How long would Quicksort run if it included the pivot in the second partition (in the worst case)?

- Complexity of Sorting
 - decision tree

Hashing

- Constant-Time Dictionaries?
- Hash Tables

Are hash tables good for range queries?

- Hash Functions
- Collisions and the Pigeonhole Principle
 - load factor
- Collision Resolution:
 - Separate Chaining
 - Open Addressing

Search Trees

- Binary Trees
- Binary Search Trees
- Insertion, Deletion
 - reference parameters
- pre/in/post-order traversal
 Write code to reverse a binary search tree.
- Some troubling questions

- Balance implies shallow (shallow is good)
- How to achieve balance
- Single and double rotations What is the result of rotateLeft(x); rotateRight(x);?
- AVL tree implementation

B⁺-**Trees**

- Minimizing disk I/Os
- B⁺-Tree properties
 - ► *M* and *L* parameters
- Implementing B⁺-Tree insert and delete

Parallelism

- History and Motivation
- Parallelism versus Concurrency
- Counting Matches in Parallel
- Divide and Conquer
- Fork and Join
- Reduce and Map
- Analyzing Parallel Programs
 - DAG
 - Work and Span
 - Ahmdahl's Law
- Parallel Prefix Sum

Graphs

- Topological Sort: Sorting vertices
- Graph ADT and Graph Representations
- Graph Terminology
- Graph Algorithms
 - Depth-First Search Breadth-First Search
 - Shortest Path (Dijkstra's Algorithm)
 - Minimum Spanning Tree (Kruskal's Algorithm)