Stack Queue Deque

- Fibonacci Fun
- repeated squaring
- ADT vs Data Structures
- Queues
- Stacks
- Deques
- implementations with arrays, circular arrays, linked lists
- Linked lists Doubly-linked lists Skip lists
- working with pointers

Complexity Analysis

- Time and Space complexity
- Algorithm Analysis: Counting steps
- Asymptotic Notation

$$
O \quad \Omega \quad \Theta
$$

If $f(n) \in O(g(n))$ then $2^{f(n)} \in O\left(2^{g(n)}\right)$. True/False?

- Runtime Examples
$\lg (n!) \in \Theta(?)$
- Problem Complexity

What is the time complexity of sorting by comparisons?

Priority Queues

- Rooted Trees, Briefly
- Priority Queue ADT
- Heaps
- nearly complete binary tree
- nifty representation as an array

Is | 2 | 7 | 3 | 10 | 8 | 4 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Implementing Priority Queue ADT
- SwapDown
- SwapUp
- Heapify
- Analysis of Heapify
- Brief introduction to d-Heaps

Induction

- Thinking Recursively
- Recursion Examples
- Analyzing Recursion: Induction and Recurrences
- Use induction to prove correctness of recursive algorithm
- Forming recurrences expressing running time
- Solving recurrences (substitution method) and induction
- Analysis of running time using a recursion tree
- Analyzing Iteration: Loop Invariants
- Proof by induction on the number of iterations!
- How Computers Handle Recursion
- Recursion and the Call Stack
- Iteration and Explicit Stacks
- Tail Recursion
- Removing tail recursion

Sorting

- Comparing Sorting Algorithms
- worst-, best-, average- case running times
- stable sort
- in-place
- Insertion Sort
- Heapsort
- Mergesort
- Quicksort

How long would Quicksort run if it included the pivot in the second partition (in the worst case)?

- Complexity of Sorting
- decision tree

Hashing

- Constant-Time Dictionaries?
- Hash Tables

Are hash tables good for range queries?

- Hash Functions
- Collisions and the Pigeonhole Principle
- load factor
- Collision Resolution:
- Separate Chaining
- Open Addressing

Search Trees

- Binary Trees
- Binary Search Trees
- Insertion, Deletion
- reference parameters
- pre/in/post-order traversal

Write code to reverse a binary search tree.

- Some troubling questions

AVL trees

- Balance implies shallow (shallow is good)
- How to achieve balance
- Single and double rotations What is the result of rotateLeft(x) ; rotateRight(x) ; ?
- AVL tree implementation

B^{+}-Trees

- Minimizing disk I/Os
- B^{+}-Tree properties
- M and L parameters
- Implementing B^{+}-Tree insert and delete

Parallelism

- History and Motivation
- Parallelism versus Concurrency
- Counting Matches in Parallel
- Divide and Conquer
- Fork and Join
- Reduce and Map
- Analyzing Parallel Programs
- DAG
- Work and Span
- Ahmdahl's Law
- Parallel Prefix Sum

Graphs

- Topological Sort: Sorting vertices
- Graph ADT and Graph Representations
- Graph Terminology
- Graph Algorithms
- Depth-First Search Breadth-First Search
- Shortest Path (Dijkstra's Algorithm)
- Minimum Spanning Tree (Kruskal's Algorithm)

