B+ Trees

Some interesting, practical trees...

Learning Goals

After this unit, you should be able to...

- Describe the structure, navigation and complexity of an order m B+ tree.
- Insert and delete elements from a B+ tree.
- Explain the relationship among the order of a B+ tree, the number of nodes, and the min and max capacities of internal and external nodes.
- Give examples of the types of problems that B+ trees can solve efficiently.
- Compare and contrast B+ trees and hash data structures. Explain and justify the relationship between nodes in a B+ tree and blocks/pages on disk.
- Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+ trees).

B⁺-Trees

(Note: This material is not in our two textbooks.)

A B⁺-tree is a very efficient, dynamic, balanced, search tree that can be used even when the data structure is too big to fit into main memory. It is a generalization of a binary search tree, with many keys allowed per internal and external node.

Here is an example of a B⁺-tree containing 16 data entries in the leaves. Can you see any similarities to a binary search tree?

General Comments

- Like other search structures, a B⁺-tree is an *index*.
- The keys in the tree are ordered.
- Internal nodes simply "direct traffic". They contain some key values, along with pointers to their children.
- External nodes (leaves) contain all of the keys. In the leaf pages, each key also has a "value" part. So far in this course, we have often considered <key, value> pairs. With B+-trees, we can do this, too; however, sometimes the "value" is a pointer (e.g., 10 bytes long) that contains the disk address of the object to which the key applies (e.g., employee record/structure, video, file). This is a great idea, especially when the data values would take up too many bytes of memory/storage.

General Comments

- A typical size for a node in a B⁺-tree is _____, which is a common page size for file systems.
- An *I/O* or *an I/O operation* (input-output operation) is defined to be a transfer of a "block" or page of data between ____ and ___.
- Disk access (I/O) times exceed memory-access times by several orders of magnitude. Therefore, the number of I/Os will provide us with a *very* useful complexity measure for many types of applications.
- B⁺-trees belong to a family of trees called B-trees.
- B+ trees are very heavily used in relational database systems.

Order of a B⁺-Tree

- Let us define the order *m* of a B+ tree as the maximum number of *data entries* (e.g., <key,pointer> pairs) that can fit in a leaf page (node).
 - Usually, longer keys (e.g., strings vs. integers) mean that fewer data entries can fit in a leaf page.
- Note: Different authors may have different definitions of order. For example, some authors say that the order is:
 - the *minimum* number *d* of search keys permitted by a non-root node. [Ramakrishnan & Gehrke]. The maximum number of search keys that will fit in a node is therefore 2*d*, which is what we call *m*.
 - the *maximum* number *d* of <u>children</u> permitted in an internal node [Silberschatz, Korth, & Sudarshan]

Example: Two B+-Trees of Order 3

• This example shows two different order 3 B+ trees and the (same) data records that they point to.

Download the PDF slide (full page), separately, on WebCT.

Properties of a B⁺-Tree of Order m

- All leaves are on the same level.
- If a B+ tree consists of a single node, then the node is both a root and a leaf. (It's an external node in this case, not an internal node.)
- "Half-full" rule, part 1: Each *leaf node* (unless it's a root) must contain between $\lceil m/2 \rceil$ and m < key,pointer > pairs.
- "Half-full" rule, part 2: Each *internal node* other than the root has between $\lceil (m+1)/2 \rceil$ and m+1 *children*, where $m \ge 2$.
 - How does the number of keys in an internal node relate to the number of children (child pointers) that it has?

Properties of a B⁺-Tree of Order *m* (cont.)

- Equivalently, each internal node other than the root contains between $\lfloor m/2 \rfloor$ and m search keys: $x_1 < x_2 < \dots < x_k$ where $\lfloor m/2 \rfloor \le k \le m$
 - The internal node's i^{th} child has keys in the range $[x_{i-1}, x_i)$ for i = 1, 2, ..., k+1 (where x_0 and x_{k+1} are arbitrarily small and large values, respectively).
- The *root* node contains between 1 and *m* search keys (or between 1 and *m* <key,pointer> pairs if the root is a leaf).
- Each leaf node also contains pointers to its adjacent siblings—forming a doubly-linked list. Why might this be useful?

Sample Calculations

Let's compute the number of *data entries* per leaf page, given two scenarios:

• <key, pointer>: 4K page, 4-byte integer key, 10-byte disk address:

• <key, record>: 4K page, 4-byte integer key, 800-byte data record having many fields:

Searching a B⁺-Tree of Order 4

- Searching begins at the <u>root</u>, and key comparisons direct us to a leaf
- Example: Search for 5^* , 15^* , all data entries $\ge 22^*$...

Inserting into a B⁺-Tree

- Find correct leaf L
- Try to put (key,pointer) pair into L
 - If L has enough space, then put it here.
 - Else, *split L* (into *L* and a new node *L2*)
 - Redistribute L's entries evenly between L and L2
 - Copy up the middle key, i.e., recursively insert middle key into parent of L and add a pointer from L's parent to L2
- When inserting into an internal node *V*:
 - If V has enough space, then put it here.
 - Else, split V (into V and a new node V2)
 - Redistribute V's entries evenly between V and V2
 - Move up the middle key. (Contrast this with leaf splits.)
- Splits "grow" the tree by making it wider. If the root splits, the tree increases in height by one.

Inserting 8* into the Sample B+-Tree from Previous Pages

Observe how minimum occupancy is guaranteed in leaf page splits

• Note the difference between *copy up* and *move up*.

B⁺-Tree After Inserting 8*

- ❖ Note that root was split, leading to increase in height
- ❖ In this example, we can avoid splitting by re-distributing entries; however, this is usually not done in practice.

Deleting from a B⁺-Tree

- Find leaf L containing (key,pointer) entry to delete
- Remove entry from *L*
 - If L meets the "half full" criteria, then we're done.
 - Otherwise, L has too few data entries.
 - If L's right sibling can spare an entry, then move smallest entry in right sibling to L
 - Else, if L's left sibling can spare an entry then move largest entry in left sibling to L
 - Else, *merge* L and a sibling
- If merging, then recursively delete the entry (pointing to *L* or sibling) from the parent.
- Merge could propagate to root, decreasing height

Tree after (Inserting 8* and then) Deleting 19* and 20* ...

- Deleting 19* is easy (root can continue to hold 19 since it still directs searches properly)
- Deleting 20* is done with re-distribution; notice how key 27 is *copied up* to replace 24.

... and then Deleting 24*

- Merging two leaves causes recursive delete of search key 27 from parent
- Merging root's children causes "pull down" of search key 19 from root and root's deletion

Some B⁺-Tree Statistics, in Practice

- Typical order = 200
- Typical fill-factor = 66% (about 132 pairs per leaf)
- Average fanout (# of children) = 133
- Typical capacities (approx. # of records pointed to):
 - Height 3: $133^3 * 132 = 310,548,084$ records
 - Height 2: $133^2 * 132 = 2,334,948$ records
- Can often retain (cache/hold) the top 2 levels in the buffer pool (i.e, RAM) for an actively used B+ tree:
 - Level 0 = 1 page = 4 KB
 - Level 1 = 133 pages = 0.5 MB (approx.)
 - Level 2 = 17,689 pages = 66.5 MB (approx.)
 - Level 3 = 2.35M pages = 9.4 GB (approx.)

Equality and Range Searches

- B⁺-trees are great for performing equality or range searches. Examples:
 - Find all information about the student whose ID is 78358990.
 - Find all employees who make more than \$100,000 per year.
 - Find all employees who make less than \$17,000 per year.
 - Find all employees who make between \$46,500 and \$46,999 per year.
- Indexes can be created on unique or non-unique search keys, but in order for us to efficiently look up an employee that makes *x* dollars per year, we need to build an index for the salary field (else we're forced to do a linear (exhaustive) search).
- Hash indexes are great for equality searches, but they're not useful for range searches. Why not?

Complexity Questions about B+-Trees

Let us assume that an order m B+ tree contains n unique keys (e.g., customer numbers for n customers). Suppose further that there are N nodes in this tree.

• In the worst case, how many *nodes* need to be visited to find out if a particular customer number exists?

- How many *nodes* need to be visited to print all the keys in order?
- Why should we measure complexity in terms of I/Os rather than, say, CPU time or the # of instructions executed?

Learning Goals

After this unit, you should be able to...

- Describe the structure, navigation and complexity of an order m B+ tree.
- Insert and delete elements from a B+ tree.
- Explain the relationship among the order of a B+ tree, the number of nodes, and the min and max capacities of internal and external nodes.
- Give examples of the types of problems that B+ trees can solve efficiently.
- Compare and contrast B+ trees and hash data structures. Explain and justify the relationship between nodes in a B+ tree and blocks/pages on disk.
- Justify why the number of I/Os becomes a more appropriate complexity measure (than the number of operations/steps) when dealing with larger datasets and their indexing structures (e.g., B+ trees).