B+ Trees

Some interesting, practical trees...

Learning Goals

After this unit, you should be able to...

Describe the structure, navigation and complexity of an order m B+
tree.

Insert and delete elements from a B+ tree.

Explain the relationship among the order of a B+ tree, the number of
nodes, and the min and max capacities of internal and external nodes.
Give examples of the types of problems that B+ trees can solve
efficiently .

Compare and contrast B+ trees and hash data structures. Explain and
justify the relationship between nodes in a B+ tree and blocks/pages on
disk.

e Justify why the number of I/Os becomes a more appropriate complexity

measure (than the number of operations/steps) when dealing with
larger datasets and their indexing structures (e.g., B+ trees).

B™-Trees

(Note: This material is not in our two textbooks.)
A B*-tree 1s a very efficient, dynamic, balanced, search tree that can

be used even when the data structure is too big to fit into main

memory. It 1s a generalization of a binary search tree, with many
keys allowed per internal and external node.

Here is an example of a B'-tree containing 16 data entries in the
leaves. Can you see any similarities to a binary search tree?

Root \

14 19 24

33

2* 3* 5* 7* 14* 16* 19* 20* 22*

24*

27*

29*

33*

34*

38*

39*

CPSC 221 B+-Trees

Page

General Comments

Like other search structures, a B*-tree 1s an index.

The keys in the tree are ordered.

Internal nodes simply “direct traffic”. They contain some key
values, along with pointers to their children.

External nodes (leaves) contain all of the keys. In the leaf pages,
cach key also has a “value” part. So far in this course, we have
often considered <key, value> pairs. With B™-trees, we can do
this, too; however, sometimes the “value” is a pointer (e.g., 10
bytes long) that contains the disk address of the object to which
the key applies (e.g., employee record/structure, video, file). This
1s a great idea, especially when the data values would take up too
many bytes of memory/storage.

CPSC 221 B+-Trees Page

General Comments

e A typical size for a node in a B™-tree 1s , which is a
common page size for file systems.

* An [/0 or an I/0 operation (input-output operation) 1s defined to be
a transfer of a “block™ or page of data between
and

« Disk access (I/0) times exceed memory-access times by several
orders of magnitude. Therefore, the number of I/Os will provide us
with a very useful complexity measure for many types of
applications.

« BT-trees belong to a family of trees called B-trees.

« B+ trees are very heavily used in relational database systems.

CPSC 221 B+-Trees Page

Order of a B™-Tree

e Let us define the order m of a B+ tree as the maximum
number of data entries (e.g., <key,pointer> pairs) that
can fit in a leaf page (node).

— Usually, longer keys (e.g., strings vs. integers) mean that
fewer data entries can fit in a leaf page.

« Note: Different authors may have different definitions of order.
For example, some authors say that the order is:

— the minimum number d of search keys permitted by a non-root node.
[Ramakrishnan & Gehrke]. The maximum number of search keys that
will fit in a node 1s therefore 2d, which 1s what we call m.

— the maximum number d of children permitted in an internal node
[Silberschatz, Korth, & Sudarshan]

CPSC 221 B+-Trees Page

Example: Two B*-Trees of Order 3

« This example shows two different order 3 B+ trees and the (same) data
records that they point to.

Download the PDF slide (full page), separately, on WebCTT.

CPSC 221 B+-Trees Page

Properties of a B™-Tree of Order m

 All leaves are on the same level.

« If a B+ tree consists of a single node, then the node 1s
both a root and a leaf. (It’s an external node 1n this case,
not an internal node.)

e “Half-full” rule, part 1: Each leaf node (unless 1t’s a root)
must contain between [m/2 | and m <key,pointer> pairs.

o “Half-full” rule, part 2: Each internal node other than
the root has between [(m+1)/2] and m+1 children, where

mz=2.

— How does the number of keys in an internal node relate to the
number of children (child pointers) that it has?

CPSC 221 B+-Trees Page

Properties of a B™-Tree
of Order m (cont.)

* Equivalently, each internal node other than the root
contains between | m/2 | and m search keys: x,<x,< ...

<x, where |m/2|<k=m

— The internal node’s i" child has keys in the range [x,_,, x,) for
i=1,2, ..., k+1 (where x, and x,_, are arbitrarily small and
large values, respectively).

« The root node contains between 1 and m search keys (or between
1 and m <key,pointer> pairs if the root is a leaf).

* Each leaf node also contains pointers to its adjacent siblings—
forming a doubly-linked list. Why might this be useful?

CPSC 221 B+-Trees Page

Sample Calculations

Let’s compute the number of data entries per leaf page, given
two scenarios:

« <key, pointer>: 4K page, 4-byte integer key, 10-byte disk
address:

« <key, record>: 4K page, 4-byte integer key, 800-byte data record
having many fields:

CPSC 221 B+-Trees Page

Searching a B™-Tree of Order 4

e Searching begins at the root, and key comparisons direct us
to a leaf

« Example: Search for 5*, 15%*, all data entries = 22* ...

Root \

14 19 24 33

//_\///_\ | /\\m

CPSC 221 B+-Trees Page

Inserting into a B™-Tree

Find correct leaf L

Try to put (key,pointer) pair into L
— If L has enough space, then put it here.
- Else, split L (into L and a new node L?2)

« Redistribute L’s entries evenly between L and L2

e Copy up the middle key, i.e., recursively insert middle key into
parent of L and add a pointer from L’s parent to L2

When 1nserting into an internal node V-
— If V' has enough space, then put it here.
— Else, split V' (into /" and a new node V'2)

- Redistribute J”’s entries evenly between J and V2
* Move up the middle key. (Contrast this with leaf splits.)

Splits “grow” the tree by making 1t wider. If the root
splits, the tree increases 1n height by one.

CPSC 221

B-+-Trees Page

Inserting 8* into the Sample
B*-Tree from Previous Pages

 (Observe how
minimum
occupancy 1s
guaranteed 1n leaf
page splits

* Note the difference
between copy up
and move up.

-5

Entry to be inserted in parent node.
Note that 5 is copied up and

\ continues to appear in the leaf.

Entry to be inserted in parent node.
Note that 19 is moved up and only
appears once in the internal nodes.
Contrast this with a leaf split.

5 -
< \ |
2* 3* 5* 7* 8*
19 [|——>
5 14 24 53
y /¥

CPSC 221

B+-Trees

Page

B*-Tree After Inserting 8*

ROON

19

/'

y

/

\ \

24

33

y,

T

2| 3*

5*

14
7*

8*

x& /\
14*(16* 1

91 207

22*

24~

27*

29*

33*

34*

38*

39*

“ Note that root was split, leading to increase in height

% In this example, we can avoid splitting by re-distributing

entries; however, this is usually not done in practice.

CPSC 221

B+-Trees

Page

Deleting from a B™-Tree

* Find leaf L containing (key,pointer) entry to delete

 Remove entry from L
— If L meets the “half full” criteria, then we’re done.
— Otherwise, L has too few data entries.

 If L’s right sibling can spare an entry, then move smallest
entry in right sibling to L

 Else, 1f L’s left sibling can spare an entry then move
largest entry 1n left sibling to L

 Else, merge L and a sibling

» If merging, then recursively delete the entry (pointing to
L or sibling) from the parent.

* Merge could propagate to root, decreasing height

CPSC 221 B+-Trees Page

Tree after (Inserting 8* and then)
Deleting 19* and 20* ...

19
5 14 27 33
y \ y ~

A 14*(16*

2% [3* 5 221 247 27| 29* 33* 34* 38*| 39*

8*

* Deleting 19* 1s easy (root can continue to hold 19
since 1t still directs searches properly)

* Deleting 20* 1s done with re-distribution; notice
how key 27 1s copied up to replace 24.

CPSC 221 B+-Trees Page

... and then Deleting 24*

* Merging two leaves causes
recursive delete of search

key 27 from parent

\

/.

33

e Merging root’s children < i ”
22* | 27* | 29 * | 34+ | 38* | 39"

causes “pull down” of 29 3% | %4

search key 19 from root

and root’s deletion

New root
5 14 19 33
Y~ N\ v~ N\ i v~ N\ v~ N\

2*

3* 5| 7 | 8*

14*

16*

22*

27*

29*

33*

34*

38*

39*

CPSC 221

B+-Trees

Page

Some B™-Tree Statistics,
in Practice

» Typical order = 200
» Typical fill-factor = 66% (about 132 pairs per leaf)
« Average fanout (# of children) = 133

« Typical capacities (approx. # of records pointed to):
- Height 3: 1333 * 132 = 310,548,084 records
— Height 2: 1332 * 132= 2,334,948 records
» (Can often retain (cache/hold) the top 2 levels in the buffer pool
(i.e, RAM) for an actively used B+ tree:
- Level 0= 1 page = 4 KB
- Level 1= 133 pages= 0.5 MB (approx.)
- Level 2=17,689 pages= 66.5MB (approx.)
- Level 3 =2.35M pages= 9.4 GB (approx.)

CPSC 221 B+-Trees Page

Equality and Range Searches

« BT-trees are great for performing equality or range searches.

Examples:
— Find all information about the student whose ID is 78358990.
— Find all employees who make more than $100,000 per year.
— Find all employees who make less than $17,000 per year.
— Find all employees who make between $46,500 and $46,999 per year.

* Indexes can be created on unique or non-unique search keys,
but in order for us to efficiently look up an employee that
makes x dollars per year, we need to build an index for the
salary field (else we’re forced to do a linear (exhaustive)
search).

« Hash indexes are great for equality searches, but they’re not
useful for range searches. Why not?

CPSC 221 B+-Trees Page

Complexity Questions about B*-Trees

Let us assume that an order m B+ tree contains n unique keys
(e.g., customer numbers for n customers). Suppose further that
there are N nodes 1n this tree.

 In the worst case, how many nodes need to be visited to find out
if a particular customer number exists?

* How many nodes need to be visited to print all the keys 1n order?

 Why should we measure complexity in terms of I/Os rather than,
say, CPU time or the # of instructions executed?

CPSC 221 B+-Trees Page

Learning Goals

After this unit, you should be able to...

Describe the structure, navigation and complexity of an order m B+
tree.

Insert and delete elements from a B+ tree.

Explain the relationship among the order of a B+ tree, the number of
nodes, and the min and max capacities of internal and external nodes.
Give examples of the types of problems that B+ trees can solve
efficiently .

Compare and contrast B+ trees and hash data structures. Explain and
justify the relationship between nodes in a B+ tree and blocks/pages on
disk.

e Justify why the number of I/Os becomes a more appropriate complexity

measure (than the number of operations/steps) when dealing with
larger datasets and their indexing structures (e.g., B+ trees).

