
B+ Trees
Some interesting, practical trees...



Learning Goals

After this unit, you should be able to...
• Describe the structure, navigation and complexity of an order m B+ 

tree.
• Insert and delete elements from a B+ tree.
• Explain the relationship among the order of a B+ tree, the number of 

nodes, and the min and max capacities of internal and external nodes.
• Give examples of the types of problems that B+ trees can solve 

efficiently .
• Compare and contrast B+ trees and hash data structures.  Explain and 

justify the relationship between nodes in a B+ tree and blocks/pages on 
disk.

• Justify why the number of I/Os becomes a more appropriate complexity 
measure (than the number of operations/steps) when dealing with 
larger datasets and their indexing structures (e.g., B+ trees).
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B+-Trees
(Note: This material is not in our two textbooks.)

 A B+-tree is a very efficient, dynamic, balanced, search tree that can 
be used even when the data structure is too big to fit into main 
memory.  It is a generalization of a binary search tree, with many 
keys allowed per internal and external node.

    Here is an example of a B+-tree containing 16 data entries in the 
leaves. Can you see any similarities to a binary search tree?

Root

19 24 33

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

14
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General Comments
• Like other search structures, a B+-tree is an index.
• The keys in the tree are ordered.
• Internal nodes simply “direct traffic”.  They contain some key 

values, along with pointers to their children. 
• External nodes (leaves) contain all of the keys.  In the leaf pages, 

each key also has a “value” part.  So far in this course, we have 
often considered <key, value> pairs.  With B+-trees, we can do 
this, too; however, sometimes the “value” is a pointer (e.g., 10 
bytes long) that contains the disk address of the object to which 
the key applies (e.g., employee record/structure, video, file).  This 
is a great idea, especially when the data values would take up too 
many bytes of memory/storage. 
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General Comments
• A typical size for a node in a B+-tree is ________, which is a 

common page size for file systems.

• An I/O or an I/O operation (input-output operation) is defined to be 
a transfer of a “block” or page of data between ______________ 
and _______________.

• Disk access (I/O) times exceed memory-access times by several 
orders of magnitude.  Therefore, the number of I/Os will provide us 
with a very useful complexity measure for many types of 
applications.

• B+-trees belong to a family of trees called B-trees.

• B+ trees are very heavily used in relational database systems.
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Order of a B+-Tree
• Let us define the order m of a B+ tree as the maximum 

number of data entries (e.g., <key,pointer> pairs) that 
can fit in a leaf page (node).
– Usually, longer keys (e.g., strings vs. integers) mean that 

fewer data entries can fit in a leaf page.
• Note:  Different authors may have different definitions of order.  

For example, some authors say that the order is:
– the minimum number d of search keys permitted by a non-root node. 

[Ramakrishnan & Gehrke].  The maximum number of search keys that 
will fit in a node is therefore 2d, which is what we call m.

– the maximum number d of children permitted in an internal node 
[Silberschatz, Korth, & Sudarshan]
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Example: Two B+-Trees of Order 3
• This example shows two different order 3 B+ trees and the (same) data 

records that they point to.  

  Download the PDF slide (full page), separately, on WebCT.
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Properties of a B+-Tree of Order m
• All leaves are on the same level.
• If a B+ tree consists of a single node, then the node is 

both a root and a leaf.  (It’s an external node in this case, 
not an internal node.)

• “Half-full” rule, part 1:  Each leaf node (unless it’s a root) 
must contain between m/2 and m <key,pointer> pairs.

• “Half-full” rule, part 2: Each internal node other than     
the root has between (m+1)/2 and m+1 children, where      
m ≥ 2.
– How does the number of keys in an internal node relate to the 

number of children (child pointers) that it has?
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Properties of a B+-Tree 
of Order m (cont.)

• Equivalently, each internal node other than the root 
contains between m/2 and m search keys: x1< x2 < … 
< xk  where  m/2 ≤ k ≤ m

– The internal node’s ith child has keys in the range [xi−1, xi) for 
i = 1, 2, …, k+1 (where x0 and xk+1 are arbitrarily small and 
large values, respectively).

• The root node contains between 1 and m search keys (or between 
1 and m <key,pointer> pairs if the root is a leaf).

• Each leaf node also contains pointers to its adjacent siblings—
forming a doubly-linked list.  Why might this be useful?
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Sample Calculations
 Let’s compute the number of data entries per leaf page, given 

two scenarios:

• <key, pointer>: 4K page, 4-byte integer key, 10-byte disk 
address:

• <key, record>: 4K page, 4-byte integer key, 800-byte data record 
having many fields:
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Searching a B+-Tree of Order 4
• Searching begins at the root, and key comparisons direct us 

to a leaf 
• Example: Search for 5*, 15*, all data entries ≥ 22* …

Root

19 24 33

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

14



CPSC 221                                           B+-Trees                                 Page 

Inserting into a B+-Tree 
• Find correct leaf L 
• Try to put (key,pointer) pair into L

– If L has enough space, then put it here.
– Else, split  L (into L and a new node L2)

• Redistribute L’s entries evenly between L and L2
• Copy up the middle key, i.e., recursively insert middle key into 

parent of L and add a pointer from L’s parent to L2
• When inserting into an internal node V:

– If V has enough space, then put it here.
– Else, split V (into V and a new node V2)

• Redistribute V’s entries evenly between V and V2
• Move up the middle key.  (Contrast this with leaf splits.)

• Splits “grow” the tree by making it wider.  If the root 
splits, the tree increases in height by one.
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Inserting 8* into the Sample
 B+-Tree from Previous Pages

• Observe how 
minimum 
occupancy is 
guaranteed in leaf 
page splits

• Note the difference 
between copy up 
and move up.

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node. 
Note that 5 is copied up and 
continues to appear in the leaf.

5 24 33

19

14

Entry to be inserted in parent node. 
Note that 19 is moved up and only 
appears once in the internal nodes.  
Contrast this with a leaf split.
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B+-Tree After Inserting 8*

 Note that root was split, leading to increase in height

 In this example, we can avoid splitting by re-distributing               
entries; however, this is usually not done in practice.

2* 3*

Root

19

24 33

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

145

7*5* 8*



CPSC 221                                           B+-Trees                                 Page 

Deleting from a B+-Tree 
• Find leaf L containing (key,pointer) entry to delete
• Remove entry from L

– If L meets the “half full” criteria, then we’re done.
– Otherwise, L has too few data entries.

• If L’s right sibling can spare an entry, then move smallest 
entry in right sibling to L

• Else, if L’s left sibling can spare an entry then move 
largest entry in left sibling to L

• Else, merge L and a sibling
• If merging, then recursively delete the entry (pointing to 

L or sibling) from the parent.
• Merge could propagate to root, decreasing height
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Tree after (Inserting 8* and then) 
Deleting 19* and 20* …

• Deleting 19* is easy (root can continue to hold 19 
since it still directs searches properly)

• Deleting 20* is done with re-distribution; notice 
how key 27 is copied up to replace 24.

2* 3*

Root

19

33

14* 16* 33* 34* 38* 39*

145

7*5* 8* 22* 24*

27

27* 29*
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     ... and then Deleting 24*
• Merging two leaves causes 

recursive delete of search 
key 27 from parent

• Merging root’s children 
causes “pull down” of 
search key 19 from root 
and root’s deletion

33

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

New root

33145 19
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Some B+-Tree Statistics, 
in Practice

• Typical order = 200
• Typical fill-factor = 66% (about 132 pairs per leaf)
• Average fanout (# of children) = 133
• Typical capacities (approx. # of records pointed to):

– Height 3: 1333 * 132 = 310,548,084 records
– Height 2: 1332 * 132 =     2,334,948 records

• Can often retain (cache/hold) the top 2 levels in the buffer pool 
(i.e, RAM) for an actively used B+ tree:

– Level 0 =           1 page  =        4 KB
– Level 1 =      133 pages =     0.5 MB (approx.)
– Level 2 = 17,689 pages =    66.5MB (approx.)
– Level 3 = 2.35M pages =      9.4 GB (approx.)
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Equality and Range Searches
• B+-trees are great for performing equality or range searches.  

Examples:
– Find all information about the student whose ID is 78358990.
– Find all employees who make more than $100,000 per year.
– Find all employees who make less than $17,000 per year.
– Find all employees who make between $46,500 and $46,999 per year.

• Indexes can be created on unique or non-unique search keys, 
but in order for us to efficiently look up an employee that 
makes x dollars per year, we need to build an index for the 
salary field (else we’re forced to do a linear (exhaustive) 
search).

• Hash indexes are great for equality searches, but they’re not 
useful for range searches.  Why not?
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Complexity Questions about B+-Trees
 Let us assume that an order m B+ tree contains n unique keys 

(e.g., customer numbers for n customers).  Suppose further that 
there are N nodes in this tree.

• In the worst case, how many nodes need to be visited to find out 
if a particular customer number exists?

• How many nodes need to be visited to print all the keys in order?

• Why should we measure complexity in terms of I/Os rather than, 
say, CPU time or the # of instructions executed?



Learning Goals

After this unit, you should be able to...
• Describe the structure, navigation and complexity of an order m B+ 

tree.
• Insert and delete elements from a B+ tree.
• Explain the relationship among the order of a B+ tree, the number of 

nodes, and the min and max capacities of internal and external nodes.
• Give examples of the types of problems that B+ trees can solve 

efficiently .
• Compare and contrast B+ trees and hash data structures.  Explain and 

justify the relationship between nodes in a B+ tree and blocks/pages on 
disk.

• Justify why the number of I/Os becomes a more appropriate complexity 
measure (than the number of operations/steps) when dealing with 
larger datasets and their indexing structures (e.g., B+ trees).


