
B+ Trees
Some interesting, practical trees...

Learning Goals

After this unit, you should be able to...
• Describe the structure, navigation and complexity of an order m B+

tree.
• Insert and delete elements from a B+ tree.
• Explain the relationship among the order of a B+ tree, the number of

nodes, and the min and max capacities of internal and external nodes.
• Give examples of the types of problems that B+ trees can solve

efficiently .
• Compare and contrast B+ trees and hash data structures. Explain and

justify the relationship between nodes in a B+ tree and blocks/pages on
disk.

• Justify why the number of I/Os becomes a more appropriate complexity
measure (than the number of operations/steps) when dealing with
larger datasets and their indexing structures (e.g., B+ trees).

CPSC 221 B+-Trees Page

B+-Trees
(Note: This material is not in our two textbooks.)

 A B+-tree is a very efficient, dynamic, balanced, search tree that can
be used even when the data structure is too big to fit into main
memory. It is a generalization of a binary search tree, with many
keys allowed per internal and external node.

 Here is an example of a B+-tree containing 16 data entries in the
leaves. Can you see any similarities to a binary search tree?

Root

19 24 33

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

14

CPSC 221 B+-Trees Page

General Comments
• Like other search structures, a B+-tree is an index.
• The keys in the tree are ordered.
• Internal nodes simply “direct traffic”. They contain some key

values, along with pointers to their children.
• External nodes (leaves) contain all of the keys. In the leaf pages,

each key also has a “value” part. So far in this course, we have
often considered <key, value> pairs. With B+-trees, we can do
this, too; however, sometimes the “value” is a pointer (e.g., 10
bytes long) that contains the disk address of the object to which
the key applies (e.g., employee record/structure, video, file). This
is a great idea, especially when the data values would take up too
many bytes of memory/storage.

CPSC 221 B+-Trees Page

General Comments
• A typical size for a node in a B+-tree is ________, which is a

common page size for file systems.

• An I/O or an I/O operation (input-output operation) is defined to be
a transfer of a “block” or page of data between ______________
and _______________.

• Disk access (I/O) times exceed memory-access times by several
orders of magnitude. Therefore, the number of I/Os will provide us
with a very useful complexity measure for many types of
applications.

• B+-trees belong to a family of trees called B-trees.

• B+ trees are very heavily used in relational database systems.

CPSC 221 B+-Trees Page

Order of a B+-Tree
• Let us define the order m of a B+ tree as the maximum

number of data entries (e.g., <key,pointer> pairs) that
can fit in a leaf page (node).
– Usually, longer keys (e.g., strings vs. integers) mean that

fewer data entries can fit in a leaf page.
• Note: Different authors may have different definitions of order.

For example, some authors say that the order is:
– the minimum number d of search keys permitted by a non-root node.

[Ramakrishnan & Gehrke]. The maximum number of search keys that
will fit in a node is therefore 2d, which is what we call m.

– the maximum number d of children permitted in an internal node
[Silberschatz, Korth, & Sudarshan]

CPSC 221 B+-Trees Page

Example: Two B+-Trees of Order 3
• This example shows two different order 3 B+ trees and the (same) data

records that they point to.

 Download the PDF slide (full page), separately, on WebCT.

CPSC 221 B+-Trees Page

Properties of a B+-Tree of Order m
• All leaves are on the same level.
• If a B+ tree consists of a single node, then the node is

both a root and a leaf. (It’s an external node in this case,
not an internal node.)

• “Half-full” rule, part 1: Each leaf node (unless it’s a root)
must contain between m/2 and m <key,pointer> pairs.

• “Half-full” rule, part 2: Each internal node other than
the root has between (m+1)/2 and m+1 children, where
m ≥ 2.
– How does the number of keys in an internal node relate to the

number of children (child pointers) that it has?

CPSC 221 B+-Trees Page

Properties of a B+-Tree
of Order m (cont.)

• Equivalently, each internal node other than the root
contains between m/2 and m search keys: x1< x2 < …
< xk where m/2 ≤ k ≤ m

– The internal node’s ith child has keys in the range [xi−1, xi) for
i = 1, 2, …, k+1 (where x0 and xk+1 are arbitrarily small and
large values, respectively).

• The root node contains between 1 and m search keys (or between
1 and m <key,pointer> pairs if the root is a leaf).

• Each leaf node also contains pointers to its adjacent siblings—
forming a doubly-linked list. Why might this be useful?

CPSC 221 B+-Trees Page

Sample Calculations
 Let’s compute the number of data entries per leaf page, given

two scenarios:

• <key, pointer>: 4K page, 4-byte integer key, 10-byte disk
address:

• <key, record>: 4K page, 4-byte integer key, 800-byte data record
having many fields:

CPSC 221 B+-Trees Page

Searching a B+-Tree of Order 4
• Searching begins at the root, and key comparisons direct us

to a leaf
• Example: Search for 5*, 15*, all data entries ≥ 22* …

Root

19 24 33

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

14

CPSC 221 B+-Trees Page

Inserting into a B+-Tree
• Find correct leaf L
• Try to put (key,pointer) pair into L

– If L has enough space, then put it here.
– Else, split L (into L and a new node L2)

• Redistribute L’s entries evenly between L and L2
• Copy up the middle key, i.e., recursively insert middle key into

parent of L and add a pointer from L’s parent to L2
• When inserting into an internal node V:

– If V has enough space, then put it here.
– Else, split V (into V and a new node V2)

• Redistribute V’s entries evenly between V and V2
• Move up the middle key. (Contrast this with leaf splits.)

• Splits “grow” the tree by making it wider. If the root
splits, the tree increases in height by one.

CPSC 221 B+-Trees Page

Inserting 8* into the Sample
 B+-Tree from Previous Pages

• Observe how
minimum
occupancy is
guaranteed in leaf
page splits

• Note the difference
between copy up
and move up.

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
Note that 5 is copied up and
continues to appear in the leaf.

5 24 33

19

14

Entry to be inserted in parent node.
Note that 19 is moved up and only
appears once in the internal nodes.
Contrast this with a leaf split.

CPSC 221 B+-Trees Page

B+-Tree After Inserting 8*

 Note that root was split, leading to increase in height

 In this example, we can avoid splitting by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

19

24 33

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

145

7*5* 8*

CPSC 221 B+-Trees Page

Deleting from a B+-Tree
• Find leaf L containing (key,pointer) entry to delete
• Remove entry from L

– If L meets the “half full” criteria, then we’re done.
– Otherwise, L has too few data entries.

• If L’s right sibling can spare an entry, then move smallest
entry in right sibling to L

• Else, if L’s left sibling can spare an entry then move
largest entry in left sibling to L

• Else, merge L and a sibling
• If merging, then recursively delete the entry (pointing to

L or sibling) from the parent.
• Merge could propagate to root, decreasing height

CPSC 221 B+-Trees Page

Tree after (Inserting 8* and then)
Deleting 19* and 20* …

• Deleting 19* is easy (root can continue to hold 19
since it still directs searches properly)

• Deleting 20* is done with re-distribution; notice
how key 27 is copied up to replace 24.

2* 3*

Root

19

33

14* 16* 33* 34* 38* 39*

145

7*5* 8* 22* 24*

27

27* 29*

CPSC 221 B+-Trees Page

 ... and then Deleting 24*
• Merging two leaves causes

recursive delete of search
key 27 from parent

• Merging root’s children
causes “pull down” of
search key 19 from root
and root’s deletion

33

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

New root

33145 19

CPSC 221 B+-Trees Page

Some B+-Tree Statistics,
in Practice

• Typical order = 200
• Typical fill-factor = 66% (about 132 pairs per leaf)
• Average fanout (# of children) = 133
• Typical capacities (approx. # of records pointed to):

– Height 3: 1333 * 132 = 310,548,084 records
– Height 2: 1332 * 132 = 2,334,948 records

• Can often retain (cache/hold) the top 2 levels in the buffer pool
(i.e, RAM) for an actively used B+ tree:

– Level 0 = 1 page = 4 KB
– Level 1 = 133 pages = 0.5 MB (approx.)
– Level 2 = 17,689 pages = 66.5MB (approx.)
– Level 3 = 2.35M pages = 9.4 GB (approx.)

CPSC 221 B+-Trees Page

Equality and Range Searches
• B+-trees are great for performing equality or range searches.

Examples:
– Find all information about the student whose ID is 78358990.
– Find all employees who make more than $100,000 per year.
– Find all employees who make less than $17,000 per year.
– Find all employees who make between $46,500 and $46,999 per year.

• Indexes can be created on unique or non-unique search keys,
but in order for us to efficiently look up an employee that
makes x dollars per year, we need to build an index for the
salary field (else we’re forced to do a linear (exhaustive)
search).

• Hash indexes are great for equality searches, but they’re not
useful for range searches. Why not?

CPSC 221 B+-Trees Page

Complexity Questions about B+-Trees
 Let us assume that an order m B+ tree contains n unique keys

(e.g., customer numbers for n customers). Suppose further that
there are N nodes in this tree.

• In the worst case, how many nodes need to be visited to find out
if a particular customer number exists?

• How many nodes need to be visited to print all the keys in order?

• Why should we measure complexity in terms of I/Os rather than,
say, CPU time or the # of instructions executed?

Learning Goals

After this unit, you should be able to...
• Describe the structure, navigation and complexity of an order m B+

tree.
• Insert and delete elements from a B+ tree.
• Explain the relationship among the order of a B+ tree, the number of

nodes, and the min and max capacities of internal and external nodes.
• Give examples of the types of problems that B+ trees can solve

efficiently .
• Compare and contrast B+ trees and hash data structures. Explain and

justify the relationship between nodes in a B+ tree and blocks/pages on
disk.

• Justify why the number of I/Os becomes a more appropriate complexity
measure (than the number of operations/steps) when dealing with
larger datasets and their indexing structures (e.g., B+ trees).

