CPSC 490
Input

Input will always arrive on stdin. You may assume input is well-formed with respect to the problem specification;
inappropriate input (e.g. text where a number was specified, number out of range, string too long) may be handled
by crashing. Normally you want to read input a “word” at a time:

C++ Java

#include <iostream> import java.util .x;

#include <string>

using namespace std; Scanner sc¢ = new Scanner (System.in);
int i = sc.nextInt ();

int i; string s; double d; String s = sc.next ();

cin >> i >> s >> d; double d = sc.nextDouble ();

// Check for end—of—file // Check for end—of—file

if (cin >> var) // read OK if (sc.hasNext()) // can read

else // EOF else // EOF

Occasionally you want to deal with a line at a time instead (e.g. dealing with strings that might have whitespace in
them or variable numbers of words without counts specified):

C++ Java

#include <iostream> import java.util.x;

#include <string>

using namespace std; Scanner sc = new Scanner (System.in);
String line = sc.nextLine ();

string line;

getline (cin, line);

NOTE: If you use both word-based and line-based functions in the same program, if you reach the end of a line using
the word-based functions, the line-based functions will see an empty line before the following line. Therefore, if you
do this, call the line function one extra time and discard its output. For example, given the following input file:

17
The quick brown fox jumps over the lazy dog.

the following code will parse it properly:

C++ Java

#include <iostream> import java.util.sx;

#include <string>

using namespace std; Scanner sc¢ = new Scanner (System.in);
int number = sc.nextInt ();

int number; // Discard the pseudo-—line
string sentence; sc.nextLine ();

cin >> number; // Read the real line

// Discard the pseudo—line String sentence = sc.nextLine ();
getline (cin, sentence);

// Read the real line

getline (cin, sentence);

Output

Output always goes to stdout. For most problems, the output your program generates must be ezactly byte-for-byte
identical to the “correct” output. This means the following will result in errors:

e Wrong answers
e incorrect spelling
e incorrect capitalization

e incorrect number of decimal places

e incorrect use of whitespace, including blanks at end of line

e confusing “a blank line between test cases” with “a blank line after each test case”

The following example prints out the following (excluding the braces): {$1234 hello world 27.35} and then moves

to the next line.

CH+

Java

#include <iostream>
using namespace std;

int dollars = 1234;
double foo = 27.35;
string word = ”hello”;
// # decimal places for doubles &
// floats
cout << fixed << setprecision (2);
cout << ’$’ << dollars << 7’
<< word << 7 world 7 << foo << endl;

import java.util .x;

int dollars = 1234;

double foo = 27.35;

String word = ”hello”;

// # decimal places for doubles & floats

// inside format string

System.out.printf(”$%d hello %s %.2f\n”,
dollars , word, foo);

Containers: Lists

A list stores a collection of items (of the same type) in an order specified as the items are added. Each item has
a position in the list, and is normally identified by its position (positions are counted starting from zero). Lists

generally allow duplicates.

If you have a reasonable upper bound on the amount of data and you don’t need to store the exact size (e.g. because
it’s implied by other parts of the problem), consider using a simple array declared to be the maximum size. In Java,
dynamically allocating arrays with sizes not known at compile time can be useful; in C++ you have to remember to

free such arrays manually so vectors are often a better choice.

One more advanced list is the vector, which is implemented on top of an array which is reallocated as needed. Vectors
are fast for finding an element by its position and adding and removing elements at the end of the list, but slow for

finding an element by its value and adding and removing elements other than at the end of the list.

CH+

Java

#include <vector>
using namespace std;

vector<int> numbers;
numbers. push_back (5);
numbers. push_back (7);

// Insert in the middle (SLOW!):
numbers. insert (numbers. begin() + 1, 6);

assert (numbers. size () = 3);
assert (numbers [0] =
assert (numbers [1] =
assert (numbers [2] =
numbers. clear ();

assert (numbers.empty ());

import java.util .sx;

List<Integer> numbers =
new ArrayList<Integer >();

numbers.add (5);

numbers.add (7);

// Insert in the middle (SLOW!):
numbers.add (1, 6);

assert (numbers. size
assert (numbers. get (
assert (numbers. get (
assert (numbers. get (
numbers. clear ();

~N O Ot Ww

Another type of list is the linked list, which is implemented as a string of nodes each of which knows how to find the
node before and after itself. Linked lists are fast for inserting and removing elements anywhere (at the beginning or
end or any location at which one holds an iterator) and iterating forward or backwards through all elements, but
slow for finding an element by its position or value.

C++

Java

#include <list >
using namespace std;

list <int> numbers;
numbers. push_back (7);
numbers. push_front (5);
// Get iterator by position (SLOW!):
list <int >::iterator iter

= numbers. begin () + 1;
assert (xiter = 7);

// Insert before iterator (fast):
numbers. insert (iter , 6);
assert (numbers. size () = 3);

import java.util.x;

List<Integer > numbers =

new LinkedList<Integer >();
numbers.add (7); // at end
numbers.add (0, 5); // at start

// Get iterator by position (SLOW!):

ListIterator <Integer> iter =
numbers. listIterator (1);

assert (iter.next() = 7);

// The iterator moved. Move it back.

iter.previous ();

// Insert before iterator (fast):

iter .add (6);
// Get elements by position assert (numbers. size () = 3);
assert (x(numbers. begin() + 0
assert (x(numbers. begin () + 1

+ 2

assert (*(numbers. begin ()

; // Get elements by position (SLOW!):
; assert (numbers. get (0) = 5);

assert (numbers. get (1) = 6);
assert (numbers. get (2) = 7);

~N o o=
— — —

These are the general-purpose lists. There is also a deque, or double-ended queue, which provides slightly different
services in C++ and in Java. In C++, deque acts very like a vector except allowing fast adding and removing of
elements at both ends (not only the back). In Java, ArrayDeque (added in version 1.6.0) also allows adding and
removing elements at both ends, but does not allow efficiently accessing an element by its position. In this course,
deques may be used in certain special cases where the front-and-back semantics are required, but we will not be
accessing elements by position.

C+_|_ Java

#include <deque>
using namespace std;

import java.util.x;

Deque<Integer> numbers =
new ArrayDeque<Integer >();

; numbers . addLast (7);

numbers. addLast (8);

; numbers. addFirst (6);

deque<int> numbers;

numbers. push_back (7)

numbers. push_back (8);

numbers. push_front (6)

numbers. push_front (5); numbers. addFirst (5);

assert (numbers. size () = 4); assert (numbers. size () = 4);

for (int i = 5; i <= 8; i++) { for (int i = 5; i <= 8; i++) {
assert (numbers. front () = 1i); assert (numbers. peekFirst () = 1i);
numbers. pop_front (); numbers. removeFirst ();

} }

Finally, there is the queue, which is similar to a deque but is intended for use in situations where all elements are
added at one end and removed at the other—in other words, a FIFO. In C++, queue is a class which uses a template
parameter to choose which implementation to use (typical choices are 1ist and deque, with deque being the default).
In Java, Queue is an interface implemented by both LinkedList and ArrayDeque.

CHt

Java

#include <queue>
using namespace std;

queue<int> numbers;
numbers. push (5);
numbers. push (6);
numbers. push (7);
numbers. push (8)

assert (numbers. size () = 4);
for (int i = 5; i <= 8; i++) {
assert (numbers. front () = 1i);

numbers . pop ();

}

import java.util.x;

Queue<Integer> numbers =
new ArrayDeque<Integer >();

numbers.add (5);

numbers.add (6);

numbers.add (7);

numbers.add (8);

assert (numbers. size () = 4);

for (int i = 5; i <= 8; i++) {
assert (numbers.peek () = 1);
numbers. remove () ;

}

Containers: Maps

Maps are collections of key-value pairs, optimized for looking up the value associated with a known key. There are
two variants: hashtables perform most operations faster (many in constant time) but do not keep their keys in sorted
order, while trees are slower (performing most operations in logarithmic time) but keep their keys sorted, which
may be useful for iteration. Maps normally do not allow duplicate keys. In general trees are fast enough for most
purposes, and defining hash functions in C++ is somewhat nonintuitive. Therefore, we will use trees in this class:

CH++ Java
#include <map> import java.util.x;
using namespace std;
Map<String , Integer> days =
map<string , int> days; new TreeMap<String, Integer >();
// Add elements: // Add elements:
days [” Monday” | = 1; days. put (” Monday” , 1);
days[” Tuesday”] = 2; days.put (” Tuesday”, 2);
days[” Wednesday”] = 3; days.put (” Wednesday”, 3);
days[” Thursday”] = 4; days.put(” Thursday”, 4);
days[” Friday”] = 5; days.put(” Friday”, 5);
days[” Saturday”] = 6; days.put(” Saturday”, 6);
days [” Sunday” | =7, days.put(” Sunday”, 7);
// Check presence: // Check presence:
assert (days.count (”Monday”) = 1); assert (days.containsKey (" Monday”));
assert (days.count (" NotADay”) = 0); assert (!days.containsKey (" NotADay”));
// Get values: // Get values:
assert (days[”Monday”] = 1); assert (days.get (”Monday”) = 1);
assert (days[” Tuesday”] = 2); assert (days.get (” Tuesday”) = 2);
// Iterate keys in order of <: // Iterate keys in order of Comparable:
map<string , int >::iterator i, iend; for (Map.Entry<String , Integer> i
for (i = days.begin (), : days.entrySet ()) {

iend = days.end(); i != iend; ++i) { String key = i.getKey ();

string key = i—>first ; int value = i.getValue ();
int value = i—>second; }
}
// Erase by key.

// Erase by key. days.remove (” Tuesday”);
days.erase (” Tuesday”);

Containers: Sets

A set is a map without values: its only purpose is to contain values (not allowing duplicates) and permit efficient
checking of whether or not a value is contained in the set. As with maps, typical implementations are hashtable-based
or tree-based. Again, hashtables keep their values unordered but are faster, while tree-based sets keep their values
in their natural order, and we will use tree sets in most cases for this class to avoid defining hash functions.

C++

Java

#include <set>
using namespace std;

set<string> words;

// Add elements:

words. insert (" Foo”);
words. insert (" Bar”);
words. insert (" Baz”);

// Check presence:
assert (words.count (" Foo”) = 1);
assert (words.count (" Quux”) = 0);

// Iterate elements in order of <:
set<string >::iterator i, iend;
for (i = words.begin (),

iend = words.end ();
i l= iend; ++i) {
string elem = xi;

}

// Erase by element.
days.erase(”Baz”);

import java.util.sx;

Set<String> words =
new TreeSet<String >();

// Add elements:

words.add (”Foo”);
words.add (” Bar”);
words.add (”Baz”);

// Check presence:
assert (days.contains (”Foo”));
assert (!days.contains (" Quux”));

// lterate elements in order of
// Comparable:
for (String elem : words) {

//
}

// Erase by element.
words .remove (" Baz”);

Sorting: Natural and Custom Orders

Every data type can have a natural ordering, which is used to determine in which order objects of that type should
be sorted. Data types can also have any number of custom orderings, which can be explicitly used to sort objects in
a different order. Functions are available in the standard libraries to efficiently sort arrays and vectors (quicksort).

CH+

Java

#include <set>
#include <map>
#include <vector>
#include <algorithm>
#include <string>
using namespace std;

// Define a custom type:
class mytype {
public:
int foo;
string bar;

}s

// Natural ordering:
// Returns true if x <y,
// false if x >=y.
bool operator <(const mytype &x,
const mytype &y) {
if (x.foo != y.foo)
return x.foo < y.foo;
else return x.bar < y.bar;

}

// Custom ordering:
bool otherorder (const mytype &x,
const mytype &y) {
if (x.bar != y.bar)
return x.bar < y.bar;
else return x.foo < y.foo;

}

// Custom order set/map:

set<mytype, typeof(&otherorder)>
s(&otherorder);

map<mytype, string ,
typeof(&otherorder)> m(&otherorder);

// Sorting:

vector <mytype> vec;

mytype ary[27];

sort (v.begin (), v.end());

sort (v.begin(), v.end(), &otherorder);
sort (ary, ary + 27);

sort (ary, ary + 27, &otherorder);

import java.util .x;

// Define a custom type:

class MyType implements Comparable {
public int foo;
public String bar;

// Natural ordering: returns >0 for >,
// 0 for =, <0 for <
public int compareTo(MyType other) {

if (foo != other.foo)
return foo — other.foo;
else

return bar.compareTo(other.bar);

}
}

// Custom ordering:
class OtherOrder implements
Comparator<MyType> {
public int compare(MyType x, MyType vy)
{
if (!x.bar.equals(y.bar))
return x.bar.compareTo(y.bar);
else
return x.foo — y.foo;

}
}

// Custom order set/map:
new TreeSet<MyType>(new OtherOrder ());
new TreeMap<MyType, String >(

new OtherOrder ());

// Sorting:

List <MyType> vec;

MyType[] ary;

Collections .sort (vec);
Collections.sort (vec, new OtherOrder());
Arrays.sort (ary);

Arrays.sort (ary, new OtherOrder());

